Plane curves as Pfaffians
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 10 (2011) no. 2, pp. 363-388

Voir la notice de l'article provenant de la source Numdam

Let C be a smooth curve in 2 given by an equation F=0 of degree d. In this paper we parametrise all linear Pfaffian representations of F by an open subset in the moduli space M C (2,K C ). We construct an explicit correspondence between Pfaffian representations of C and rank 2 vector bundles on C with canonical determinant and no sections.

Publié le :
Classification : 14H60, 14D20, 15A15, 15A54

Buckley, Anita 1 ; Košir, Tomaž 1

1 Department of Mathematics Faculty of Mathematics and Physics University of Ljubljana Jadranska 19 1000 Ljubljana, Slovenia
@article{ASNSP_2011_5_10_2_363_0,
     author = {Buckley, Anita and Ko\v{s}ir, Toma\v{z}},
     title = {Plane curves as {Pfaffians}},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     pages = {363--388},
     publisher = {Scuola Normale Superiore, Pisa},
     volume = {Ser. 5, 10},
     number = {2},
     year = {2011},
     mrnumber = {2856152},
     zbl = {1237.14039},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ASNSP_2011_5_10_2_363_0/}
}
TY  - JOUR
AU  - Buckley, Anita
AU  - Košir, Tomaž
TI  - Plane curves as Pfaffians
JO  - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY  - 2011
SP  - 363
EP  - 388
VL  - 10
IS  - 2
PB  - Scuola Normale Superiore, Pisa
UR  - http://geodesic.mathdoc.fr/item/ASNSP_2011_5_10_2_363_0/
LA  - en
ID  - ASNSP_2011_5_10_2_363_0
ER  - 
%0 Journal Article
%A Buckley, Anita
%A Košir, Tomaž
%T Plane curves as Pfaffians
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 2011
%P 363-388
%V 10
%N 2
%I Scuola Normale Superiore, Pisa
%U http://geodesic.mathdoc.fr/item/ASNSP_2011_5_10_2_363_0/
%G en
%F ASNSP_2011_5_10_2_363_0
Buckley, Anita; Košir, Tomaž. Plane curves as Pfaffians. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 10 (2011) no. 2, pp. 363-388. http://geodesic.mathdoc.fr/item/ASNSP_2011_5_10_2_363_0/