Voir la notice de l'article provenant de la source Numdam
We consider closed hypersurfaces which shrink self-similarly under a natural class of fully nonlinear curvature flows. For those flows in our class with speeds homogeneous of degree and either convex or concave, we show that the only such hypersurfaces are shrinking spheres. In the setting of convex hypersurfaces, we show under a weaker second derivative condition on the speed that again only shrinking spheres are possible. For surfaces this result is extended in some cases by a different method to speeds of homogeneity greater than . Finally we show that self-similar hypersurfaces with sufficiently pinched principal curvatures, depending on the flow speed, are again necessarily spheres.
McCoy, James Alexander 1
@article{ASNSP_2011_5_10_2_317_0, author = {McCoy, James Alexander}, title = {Self-similar solutions of fully nonlinear curvature flows}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {317--333}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 10}, number = {2}, year = {2011}, mrnumber = {2856150}, zbl = {1234.53018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ASNSP_2011_5_10_2_317_0/} }
TY - JOUR AU - McCoy, James Alexander TI - Self-similar solutions of fully nonlinear curvature flows JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2011 SP - 317 EP - 333 VL - 10 IS - 2 PB - Scuola Normale Superiore, Pisa UR - http://geodesic.mathdoc.fr/item/ASNSP_2011_5_10_2_317_0/ LA - en ID - ASNSP_2011_5_10_2_317_0 ER -
%0 Journal Article %A McCoy, James Alexander %T Self-similar solutions of fully nonlinear curvature flows %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2011 %P 317-333 %V 10 %N 2 %I Scuola Normale Superiore, Pisa %U http://geodesic.mathdoc.fr/item/ASNSP_2011_5_10_2_317_0/ %G en %F ASNSP_2011_5_10_2_317_0
McCoy, James Alexander. Self-similar solutions of fully nonlinear curvature flows. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 10 (2011) no. 2, pp. 317-333. http://geodesic.mathdoc.fr/item/ASNSP_2011_5_10_2_317_0/