Self-similar solutions of fully nonlinear curvature flows
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 10 (2011) no. 2, pp. 317-333

Voir la notice de l'article provenant de la source Numdam

We consider closed hypersurfaces which shrink self-similarly under a natural class of fully nonlinear curvature flows. For those flows in our class with speeds homogeneous of degree 1 and either convex or concave, we show that the only such hypersurfaces are shrinking spheres. In the setting of convex hypersurfaces, we show under a weaker second derivative condition on the speed that again only shrinking spheres are possible. For surfaces this result is extended in some cases by a different method to speeds of homogeneity greater than 1. Finally we show that self-similar hypersurfaces with sufficiently pinched principal curvatures, depending on the flow speed, are again necessarily spheres.

Publié le :
Classification : 53C44, 35J60

McCoy, James Alexander 1

1 Institute for Mathematics and its Applications School of Mathematics and Applied Statistics University of Wollongong Wollongong, NSW 2522, Australia
@article{ASNSP_2011_5_10_2_317_0,
     author = {McCoy, James Alexander},
     title = {Self-similar solutions of fully nonlinear curvature flows},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     pages = {317--333},
     publisher = {Scuola Normale Superiore, Pisa},
     volume = {Ser. 5, 10},
     number = {2},
     year = {2011},
     mrnumber = {2856150},
     zbl = {1234.53018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ASNSP_2011_5_10_2_317_0/}
}
TY  - JOUR
AU  - McCoy, James Alexander
TI  - Self-similar solutions of fully nonlinear curvature flows
JO  - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY  - 2011
SP  - 317
EP  - 333
VL  - 10
IS  - 2
PB  - Scuola Normale Superiore, Pisa
UR  - http://geodesic.mathdoc.fr/item/ASNSP_2011_5_10_2_317_0/
LA  - en
ID  - ASNSP_2011_5_10_2_317_0
ER  - 
%0 Journal Article
%A McCoy, James Alexander
%T Self-similar solutions of fully nonlinear curvature flows
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 2011
%P 317-333
%V 10
%N 2
%I Scuola Normale Superiore, Pisa
%U http://geodesic.mathdoc.fr/item/ASNSP_2011_5_10_2_317_0/
%G en
%F ASNSP_2011_5_10_2_317_0
McCoy, James Alexander. Self-similar solutions of fully nonlinear curvature flows. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 10 (2011) no. 2, pp. 317-333. http://geodesic.mathdoc.fr/item/ASNSP_2011_5_10_2_317_0/