Voir la notice de l'article provenant de la source Numdam
We study the stability of finite difference schemes for hyperbolic initial boundary value problems in one space dimension. Assuming -stability for the discretization of the hyperbolic operator as well as a geometric regularity condition, we show that the uniform Kreiss-Lopatinskii condition yields strong stability for the discretized initial boundary value problem. The present work extends the results of [4,7] to the widest possible class of finite difference schemes by dropping the technical assumptions of our former work [4]. We give some new examples of numerical schemes for which our results apply.
Coulombel, Jean-François 1
@article{ASNSP_2011_5_10_1_37_0, author = {Coulombel, Jean-Fran\c{c}ois}, title = {Stability of finite difference schemes for hyperbolic initial boundary value problems {II}}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {37--98}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 10}, number = {1}, year = {2011}, mrnumber = {2829318}, zbl = {1225.65089}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ASNSP_2011_5_10_1_37_0/} }
TY - JOUR AU - Coulombel, Jean-François TI - Stability of finite difference schemes for hyperbolic initial boundary value problems II JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2011 SP - 37 EP - 98 VL - 10 IS - 1 PB - Scuola Normale Superiore, Pisa UR - http://geodesic.mathdoc.fr/item/ASNSP_2011_5_10_1_37_0/ LA - en ID - ASNSP_2011_5_10_1_37_0 ER -
%0 Journal Article %A Coulombel, Jean-François %T Stability of finite difference schemes for hyperbolic initial boundary value problems II %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2011 %P 37-98 %V 10 %N 1 %I Scuola Normale Superiore, Pisa %U http://geodesic.mathdoc.fr/item/ASNSP_2011_5_10_1_37_0/ %G en %F ASNSP_2011_5_10_1_37_0
Coulombel, Jean-François. Stability of finite difference schemes for hyperbolic initial boundary value problems II. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 10 (2011) no. 1, pp. 37-98. http://geodesic.mathdoc.fr/item/ASNSP_2011_5_10_1_37_0/