In this paper, we introduce the Carleson measure space on product spaces of homogeneous type in the sense of Coifman and Weiss [4], and prove that it is the dual space of the product Hardy space of two homogeneous spaces defined in [15]. Our results thus extend the duality theory of Chang and R. Fefferman [2,3] on with which was established using bi-Hilbert transform. Our method is to use discrete Littlewood-Paley analysis in product spaces recently developed in [13] and [14].
Han, Yongsheng  1 ; Li, Ji  2 ; Lu, Guozhen  3
@article{ASNSP_2010_5_9_4_645_0,
author = {Han, Yongsheng and Li, Ji and Lu, Guozhen},
title = {Duality of multiparameter {Hardy} spaces $\mathbf{H^p}$ on spaces of homogeneous type},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
pages = {645--685},
year = {2010},
publisher = {Scuola Normale Superiore, Pisa},
volume = {Ser. 5, 9},
number = {4},
mrnumber = {2789471},
zbl = {1213.42073},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ASNSP_2010_5_9_4_645_0/}
}
TY - JOUR
AU - Han, Yongsheng
AU - Li, Ji
AU - Lu, Guozhen
TI - Duality of multiparameter Hardy spaces $\mathbf{H^p}$ on spaces of homogeneous type
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2010
SP - 645
EP - 685
VL - 9
IS - 4
PB - Scuola Normale Superiore, Pisa
UR - http://geodesic.mathdoc.fr/item/ASNSP_2010_5_9_4_645_0/
LA - en
ID - ASNSP_2010_5_9_4_645_0
ER -
%0 Journal Article
%A Han, Yongsheng
%A Li, Ji
%A Lu, Guozhen
%T Duality of multiparameter Hardy spaces $\mathbf{H^p}$ on spaces of homogeneous type
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 2010
%P 645-685
%V 9
%N 4
%I Scuola Normale Superiore, Pisa
%U http://geodesic.mathdoc.fr/item/ASNSP_2010_5_9_4_645_0/
%G en
%F ASNSP_2010_5_9_4_645_0
Han, Yongsheng; Li, Ji; Lu, Guozhen. Duality of multiparameter Hardy spaces $\mathbf{H^p}$ on spaces of homogeneous type. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 9 (2010) no. 4, pp. 645-685. http://geodesic.mathdoc.fr/item/ASNSP_2010_5_9_4_645_0/