Voir la notice de l'article provenant de la source Numdam
In this paper, we introduce the Carleson measure space on product spaces of homogeneous type in the sense of Coifman and Weiss [4], and prove that it is the dual space of the product Hardy space of two homogeneous spaces defined in [15]. Our results thus extend the duality theory of Chang and R. Fefferman [2,3] on with which was established using bi-Hilbert transform. Our method is to use discrete Littlewood-Paley analysis in product spaces recently developed in [13] and [14].
Han, Yongsheng 1 ; Li, Ji 2 ; Lu, Guozhen 3
@article{ASNSP_2010_5_9_4_645_0, author = {Han, Yongsheng and Li, Ji and Lu, Guozhen}, title = {Duality of multiparameter {Hardy} spaces $\mathbf{H^p}$ on spaces of homogeneous type}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {645--685}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 9}, number = {4}, year = {2010}, mrnumber = {2789471}, zbl = {1213.42073}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ASNSP_2010_5_9_4_645_0/} }
TY - JOUR AU - Han, Yongsheng AU - Li, Ji AU - Lu, Guozhen TI - Duality of multiparameter Hardy spaces $\mathbf{H^p}$ on spaces of homogeneous type JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2010 SP - 645 EP - 685 VL - 9 IS - 4 PB - Scuola Normale Superiore, Pisa UR - http://geodesic.mathdoc.fr/item/ASNSP_2010_5_9_4_645_0/ LA - en ID - ASNSP_2010_5_9_4_645_0 ER -
%0 Journal Article %A Han, Yongsheng %A Li, Ji %A Lu, Guozhen %T Duality of multiparameter Hardy spaces $\mathbf{H^p}$ on spaces of homogeneous type %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2010 %P 645-685 %V 9 %N 4 %I Scuola Normale Superiore, Pisa %U http://geodesic.mathdoc.fr/item/ASNSP_2010_5_9_4_645_0/ %G en %F ASNSP_2010_5_9_4_645_0
Han, Yongsheng; Li, Ji; Lu, Guozhen. Duality of multiparameter Hardy spaces $\mathbf{H^p}$ on spaces of homogeneous type. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 9 (2010) no. 4, pp. 645-685. http://geodesic.mathdoc.fr/item/ASNSP_2010_5_9_4_645_0/