Voir la notice de l'article provenant de la source Numdam
We study the semistability of , the universal quotient bundle on (1,3) restricted to any smooth surface (called congruence). Specifically, we deduce geometric conditions for a congruence , depending on the slope of a saturated linear subsheaf of . Moreover, we check that the Dolgachev-Reider Conjecture (i.e. the semistability of for nondegenerate congruences ) is true for all the congruences of degree less than or equal to 10. Also, when the degree of a congruence is less than or equal to 9, we compute the highest slope reached by the linear subsheaves of .
Arrondo, Enrique 1 ; Cobo, Sofía 1
@article{ASNSP_2010_5_9_3_503_0, author = {Arrondo, Enrique and Cobo, Sof{\'\i}a}, title = {On the stability of the universal quotient bundle restricted to congruences of low degree of $\mathbb{G}{\bf (1,3)}$}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {503--522}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 9}, number = {3}, year = {2010}, mrnumber = {2722653}, zbl = {1202.14038}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ASNSP_2010_5_9_3_503_0/} }
TY - JOUR AU - Arrondo, Enrique AU - Cobo, Sofía TI - On the stability of the universal quotient bundle restricted to congruences of low degree of $\mathbb{G}{\bf (1,3)}$ JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2010 SP - 503 EP - 522 VL - 9 IS - 3 PB - Scuola Normale Superiore, Pisa UR - http://geodesic.mathdoc.fr/item/ASNSP_2010_5_9_3_503_0/ LA - en ID - ASNSP_2010_5_9_3_503_0 ER -
%0 Journal Article %A Arrondo, Enrique %A Cobo, Sofía %T On the stability of the universal quotient bundle restricted to congruences of low degree of $\mathbb{G}{\bf (1,3)}$ %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2010 %P 503-522 %V 9 %N 3 %I Scuola Normale Superiore, Pisa %U http://geodesic.mathdoc.fr/item/ASNSP_2010_5_9_3_503_0/ %G en %F ASNSP_2010_5_9_3_503_0
Arrondo, Enrique; Cobo, Sofía. On the stability of the universal quotient bundle restricted to congruences of low degree of $\mathbb{G}{\bf (1,3)}$. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 9 (2010) no. 3, pp. 503-522. http://geodesic.mathdoc.fr/item/ASNSP_2010_5_9_3_503_0/