Voir la notice de l'article provenant de la source Numdam
In the case of smooth manifolds, we use Forman’s discrete Morse theory to realize combinatorially any Thom-Smale complex coming from a smooth Morse function by a pair triangulation-discrete Morse function. As an application, we prove that any class of homologous vector fields on a smooth oriented closed 3-manifold can be realized by a perfect matching on the Hasse diagram of a triangulation of the manifold.
@article{ASNSP_2010_5_9_2_229_0, author = {Gallais, \'Etienne}, title = {Combinatorial realization of the {Thom-Smale} complex via discrete {Morse} theory}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {229--252}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 9}, number = {2}, year = {2010}, mrnumber = {2731156}, zbl = {1201.57026}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ASNSP_2010_5_9_2_229_0/} }
TY - JOUR AU - Gallais, Étienne TI - Combinatorial realization of the Thom-Smale complex via discrete Morse theory JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2010 SP - 229 EP - 252 VL - 9 IS - 2 PB - Scuola Normale Superiore, Pisa UR - http://geodesic.mathdoc.fr/item/ASNSP_2010_5_9_2_229_0/ LA - en ID - ASNSP_2010_5_9_2_229_0 ER -
%0 Journal Article %A Gallais, Étienne %T Combinatorial realization of the Thom-Smale complex via discrete Morse theory %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2010 %P 229-252 %V 9 %N 2 %I Scuola Normale Superiore, Pisa %U http://geodesic.mathdoc.fr/item/ASNSP_2010_5_9_2_229_0/ %G en %F ASNSP_2010_5_9_2_229_0
Gallais, Étienne. Combinatorial realization of the Thom-Smale complex via discrete Morse theory. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 9 (2010) no. 2, pp. 229-252. http://geodesic.mathdoc.fr/item/ASNSP_2010_5_9_2_229_0/