Voir la notice de l'article provenant de la source Numdam
In this paper we consider the Cauchy boundary value problem for the integro-differential equation with a continuous nonlinearity . It is well known that a local solution exists provided that the initial data are regular enough. The required regularity depends on the continuity modulus of . In this paper we present some counterexamples in order to show that the regularity required in the existence results is sharp, at least if we want solutions with the same space regularity of initial data. In these examples we construct indeed local solutions which are regular at , but exhibit an instantaneous (often infinite) derivative loss in the space variables.
Ghisi, Marina 1 ; Gobbino, Massimo 2
@article{ASNSP_2009_5_8_4_613_0, author = {Ghisi, Marina and Gobbino, Massimo}, title = {Derivative loss for {Kirchhoff} equations with {non-Lipschitz} nonlinear term}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {613--646}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 8}, number = {4}, year = {2009}, mrnumber = {2647906}, zbl = {1197.35069}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ASNSP_2009_5_8_4_613_0/} }
TY - JOUR AU - Ghisi, Marina AU - Gobbino, Massimo TI - Derivative loss for Kirchhoff equations with non-Lipschitz nonlinear term JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2009 SP - 613 EP - 646 VL - 8 IS - 4 PB - Scuola Normale Superiore, Pisa UR - http://geodesic.mathdoc.fr/item/ASNSP_2009_5_8_4_613_0/ LA - en ID - ASNSP_2009_5_8_4_613_0 ER -
%0 Journal Article %A Ghisi, Marina %A Gobbino, Massimo %T Derivative loss for Kirchhoff equations with non-Lipschitz nonlinear term %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2009 %P 613-646 %V 8 %N 4 %I Scuola Normale Superiore, Pisa %U http://geodesic.mathdoc.fr/item/ASNSP_2009_5_8_4_613_0/ %G en %F ASNSP_2009_5_8_4_613_0
Ghisi, Marina; Gobbino, Massimo. Derivative loss for Kirchhoff equations with non-Lipschitz nonlinear term. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 8 (2009) no. 4, pp. 613-646. http://geodesic.mathdoc.fr/item/ASNSP_2009_5_8_4_613_0/