Derivative loss for Kirchhoff equations with non-Lipschitz nonlinear term
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 8 (2009) no. 4, pp. 613-646

Voir la notice de l'article provenant de la source Numdam

In this paper we consider the Cauchy boundary value problem for the integro-differential equation u t t - m Ω | u | 2 d x Δ u = 0 in Ω × [ 0 , T ) with a continuous nonlinearity m : [ 0 , + ) [ 0 , + ) . It is well known that a local solution exists provided that the initial data are regular enough. The required regularity depends on the continuity modulus of m . In this paper we present some counterexamples in order to show that the regularity required in the existence results is sharp, at least if we want solutions with the same space regularity of initial data. In these examples we construct indeed local solutions which are regular at t = 0 , but exhibit an instantaneous (often infinite) derivative loss in the space variables.

Classification : 35L70, 35L80, 35L90

Ghisi, Marina 1 ; Gobbino, Massimo 2

1 Università degli Studi di Pisa, Dipartimento di Matematica “Leonida Tonelli”, Largo B. Pontecorvo, 5, Pisa, Italia
2 Università degli Studi di Pisa, Dipartimento di Matematica Applicata “Ulisse Dini”, Via Filippo Buonarroti, 1c, 56127 Pisa, Italia
@article{ASNSP_2009_5_8_4_613_0,
     author = {Ghisi, Marina and Gobbino, Massimo},
     title = {Derivative loss for {Kirchhoff} equations with {non-Lipschitz} nonlinear term},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     pages = {613--646},
     publisher = {Scuola Normale Superiore, Pisa},
     volume = {Ser. 5, 8},
     number = {4},
     year = {2009},
     mrnumber = {2647906},
     zbl = {1197.35069},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ASNSP_2009_5_8_4_613_0/}
}
TY  - JOUR
AU  - Ghisi, Marina
AU  - Gobbino, Massimo
TI  - Derivative loss for Kirchhoff equations with non-Lipschitz nonlinear term
JO  - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY  - 2009
SP  - 613
EP  - 646
VL  - 8
IS  - 4
PB  - Scuola Normale Superiore, Pisa
UR  - http://geodesic.mathdoc.fr/item/ASNSP_2009_5_8_4_613_0/
LA  - en
ID  - ASNSP_2009_5_8_4_613_0
ER  - 
%0 Journal Article
%A Ghisi, Marina
%A Gobbino, Massimo
%T Derivative loss for Kirchhoff equations with non-Lipschitz nonlinear term
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 2009
%P 613-646
%V 8
%N 4
%I Scuola Normale Superiore, Pisa
%U http://geodesic.mathdoc.fr/item/ASNSP_2009_5_8_4_613_0/
%G en
%F ASNSP_2009_5_8_4_613_0
Ghisi, Marina; Gobbino, Massimo. Derivative loss for Kirchhoff equations with non-Lipschitz nonlinear term. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 8 (2009) no. 4, pp. 613-646. http://geodesic.mathdoc.fr/item/ASNSP_2009_5_8_4_613_0/