Voir la notice de l'article provenant de la source Numdam
In the paper [2] we constructed (co)homology theories on the category of smooth schemes which share some of the some of the defining properties of the (co)homology theories induced by the Morava -theory spactra in classical homotopy theory. Some proofs used the topological realization functor (cf. [8]). The existence of that functor requires the base field to be embedded in . In this manuscript we investigate up to what extent we can obtain the same results under the sole assumption of perfectness of the base field. The results proved here guarantee the existence of spectra satisfying the same properties as in [2], provided that the algebra of all the bistable motivic cohomology operations verifies an assumption involving the Milnor operation .
@article{ASNSP_2009_5_8_2_369_0, author = {Borghesi, Simone}, title = {Algebraic {Morava} $K$-theory spectra over perfect fields}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {369--390}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 8}, number = {2}, year = {2009}, mrnumber = {2548251}, zbl = {1179.14019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ASNSP_2009_5_8_2_369_0/} }
TY - JOUR AU - Borghesi, Simone TI - Algebraic Morava $K$-theory spectra over perfect fields JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2009 SP - 369 EP - 390 VL - 8 IS - 2 PB - Scuola Normale Superiore, Pisa UR - http://geodesic.mathdoc.fr/item/ASNSP_2009_5_8_2_369_0/ LA - en ID - ASNSP_2009_5_8_2_369_0 ER -
%0 Journal Article %A Borghesi, Simone %T Algebraic Morava $K$-theory spectra over perfect fields %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2009 %P 369-390 %V 8 %N 2 %I Scuola Normale Superiore, Pisa %U http://geodesic.mathdoc.fr/item/ASNSP_2009_5_8_2_369_0/ %G en %F ASNSP_2009_5_8_2_369_0
Borghesi, Simone. Algebraic Morava $K$-theory spectra over perfect fields. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 8 (2009) no. 2, pp. 369-390. http://geodesic.mathdoc.fr/item/ASNSP_2009_5_8_2_369_0/