Voir la notice de l'article provenant de la source Numdam
Let be a non-compact, real semisimple Lie group. We consider maximal complexifications of which are adapted to a distinguished one-parameter family of naturally reductive, left-invariant metrics. In the case of their realization as equivariant Riemann domains over is carried out and their complex-geometric properties are investigated. One obtains new examples of non-univalent, non-Stein, maximal adapted complexifications.
Halverscheid, Stefan 1 ; Iannuzzi, Andrea 2
@article{ASNSP_2009_5_8_1_17_0, author = {Halverscheid, Stefan and Iannuzzi, Andrea}, title = {A family of adapted complexifications for $SL_2(\mathbb{R})$}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {17--49}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 8}, number = {1}, year = {2009}, mrnumber = {2512199}, zbl = {1180.53053}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ASNSP_2009_5_8_1_17_0/} }
TY - JOUR AU - Halverscheid, Stefan AU - Iannuzzi, Andrea TI - A family of adapted complexifications for $SL_2(\mathbb{R})$ JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2009 SP - 17 EP - 49 VL - 8 IS - 1 PB - Scuola Normale Superiore, Pisa UR - http://geodesic.mathdoc.fr/item/ASNSP_2009_5_8_1_17_0/ LA - en ID - ASNSP_2009_5_8_1_17_0 ER -
%0 Journal Article %A Halverscheid, Stefan %A Iannuzzi, Andrea %T A family of adapted complexifications for $SL_2(\mathbb{R})$ %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2009 %P 17-49 %V 8 %N 1 %I Scuola Normale Superiore, Pisa %U http://geodesic.mathdoc.fr/item/ASNSP_2009_5_8_1_17_0/ %G en %F ASNSP_2009_5_8_1_17_0
Halverscheid, Stefan; Iannuzzi, Andrea. A family of adapted complexifications for $SL_2(\mathbb{R})$. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 8 (2009) no. 1, pp. 17-49. http://geodesic.mathdoc.fr/item/ASNSP_2009_5_8_1_17_0/