Let be a non-compact, real semisimple Lie group. We consider maximal complexifications of which are adapted to a distinguished one-parameter family of naturally reductive, left-invariant metrics. In the case of their realization as equivariant Riemann domains over is carried out and their complex-geometric properties are investigated. One obtains new examples of non-univalent, non-Stein, maximal adapted complexifications.
Halverscheid, Stefan  1 ; Iannuzzi, Andrea  2
@article{ASNSP_2009_5_8_1_17_0,
author = {Halverscheid, Stefan and Iannuzzi, Andrea},
title = {A family of adapted complexifications for $SL_2(\mathbb{R})$},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
pages = {17--49},
year = {2009},
publisher = {Scuola Normale Superiore, Pisa},
volume = {Ser. 5, 8},
number = {1},
mrnumber = {2512199},
zbl = {1180.53053},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ASNSP_2009_5_8_1_17_0/}
}
TY - JOUR
AU - Halverscheid, Stefan
AU - Iannuzzi, Andrea
TI - A family of adapted complexifications for $SL_2(\mathbb{R})$
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2009
SP - 17
EP - 49
VL - 8
IS - 1
PB - Scuola Normale Superiore, Pisa
UR - http://geodesic.mathdoc.fr/item/ASNSP_2009_5_8_1_17_0/
LA - en
ID - ASNSP_2009_5_8_1_17_0
ER -
%0 Journal Article
%A Halverscheid, Stefan
%A Iannuzzi, Andrea
%T A family of adapted complexifications for $SL_2(\mathbb{R})$
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 2009
%P 17-49
%V 8
%N 1
%I Scuola Normale Superiore, Pisa
%U http://geodesic.mathdoc.fr/item/ASNSP_2009_5_8_1_17_0/
%G en
%F ASNSP_2009_5_8_1_17_0
Halverscheid, Stefan; Iannuzzi, Andrea. A family of adapted complexifications for $SL_2(\mathbb{R})$. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 8 (2009) no. 1, pp. 17-49. http://geodesic.mathdoc.fr/item/ASNSP_2009_5_8_1_17_0/