Voir la notice de l'article provenant de la source Numdam
In this paper, we consider the problem of multiplicity of conformal metrics of prescribed scalar curvature on standard spheres . Under generic conditions we establish some Morse Inequalities at Infinity, which give a lower bound on the number of solutions to the above problem in terms of the total contribution of its critical points at Infinity to the difference of topology between the level sets of the associated Euler-Lagrange functional. As a by-product of our arguments we derive a new existence result on through an Euler-Hopf type formula.
@article{ASNSP_2008_5_7_4_609_0, author = {Ben Ayed, Mohamed and Ould Ahmedou, Mohameden}, title = {Multiplicity results for the prescribed scalar curvature on low spheres}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {609--634}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 7}, number = {4}, year = {2008}, mrnumber = {2483638}, zbl = {1213.58009}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ASNSP_2008_5_7_4_609_0/} }
TY - JOUR AU - Ben Ayed, Mohamed AU - Ould Ahmedou, Mohameden TI - Multiplicity results for the prescribed scalar curvature on low spheres JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2008 SP - 609 EP - 634 VL - 7 IS - 4 PB - Scuola Normale Superiore, Pisa UR - http://geodesic.mathdoc.fr/item/ASNSP_2008_5_7_4_609_0/ LA - en ID - ASNSP_2008_5_7_4_609_0 ER -
%0 Journal Article %A Ben Ayed, Mohamed %A Ould Ahmedou, Mohameden %T Multiplicity results for the prescribed scalar curvature on low spheres %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2008 %P 609-634 %V 7 %N 4 %I Scuola Normale Superiore, Pisa %U http://geodesic.mathdoc.fr/item/ASNSP_2008_5_7_4_609_0/ %G en %F ASNSP_2008_5_7_4_609_0
Ben Ayed, Mohamed; Ould Ahmedou, Mohameden. Multiplicity results for the prescribed scalar curvature on low spheres. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 7 (2008) no. 4, pp. 609-634. http://geodesic.mathdoc.fr/item/ASNSP_2008_5_7_4_609_0/
[1] Estimates near the boundary for solutions of elliptic partial differential equatins satisfying general boundary value conditions, I, Comm. Pure Appl. Math. 12 (1959), 623-727. | Zbl | MR
, and ,[2] Perturbation of , the Scalar Curvature Problem in and related topics, J. Funct. Anal. 165 (1999), 117-149. | Zbl | MR
, and ,[3] Equations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire, J. Math. Pures Appl. 55 (1976), 269-296. | Zbl | MR
,[4] Meilleures constantes de Sobolev et un théorème de Fredholm non linéaire pour la transformation conforme de la courbure scalaire, J. Funct. Anal. 32 (1979), 148-174. | Zbl | MR
,[5] “Some nonlinear problems in Riemannian geometry”, Springer Monographs Math., Springer Verlag, Berlin, 1998. | Zbl | MR
,[6] Méthodes de topologie algébrique pour le problème de la courbure scalaire prescrite. (French) [Methods of algebraic topology for the problem of prescribed scalar curvature], J. Math. Pures Appl. 76 (1997), 525-849. | Zbl | MR
and ,[7] Une hypothèse topologique pour le problème de la courbure scalaire prescrite. (French) [A topological hypothesis for the problem of prescribed scalar curvature], J. Math. Pures Appl. 76 (1997), 843-850. | Zbl | MR
and ,[8] Courbure scalaire prescrite, Bull. Sci. Math. 115 (1991), 125-132. | Zbl | MR
and ,[9] “Critical points at infinity in some variational problems”, Pitman Res. Notes Math. Ser. Longman Sci. Tech. Harlow, Vol. 182, 1989. | Zbl | MR
,[10] An invariant for Yamabe-type flows with applications to scalar curvature problems in high dimension, A celebration of J. F. Nash Jr., Duke Math. J. 81 (1996), 323-466. | Zbl | MR
,[11] On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of topology of the domain, Comm. Pure Appl. Math. 41 (1988), 255-294. | Zbl | MR
and ,[12] The scalar curvature problem on the standard three dimensional spheres, J. Funct. Anal. 95 (1991), 106-172. | Zbl | MR
and ,[13] Periodic solutions of -body problems, Ann. Inst. H. Poincaré Anal. Non linéaire. 8 (1991), 561-649. | Zbl | MR | mathdoc-id
and ,[14] On the prescribed scalar curvature problem on 4-manifolds, Duke Math. J. 84 (1996), 633-677. | Zbl | MR
, , and ,[15] Chtioui and M. Hammami, The scalar curvature problem on higher dimensional spheres, Duke Math. J. 93 (1998), 379-424. | Zbl | MR
[16] Convergence of solutions of -systems or how to blow bubbles, Arch. Ration. Mech. Anal. 89 (1985), 21-56. | Zbl | MR
and ,[17] Asymptotic symetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math. 42 (1989), 271-297. | Zbl | MR
, and ,[18] The scalar curvature equation on 2 and 3 spheres, Calc. Var. Partial Differential Equations 1 (1993), 205-229. | Zbl | MR
, and ,[19] On Nirenberg's problem, Internat. J. Math. (1993), 53-58. | Zbl | MR
and ,[20] Prescribing Gaussian curvature on , Acta Math. 159 (1987), 215-259. | Zbl | MR
and ,[21] A perturbation result in prescribing scalar curvature on , Duke Math. J. 64 (1991), 27-69. | Zbl | MR
and ,[22] Estimates of the scalar curvature via the method of moving planes I, Comm. Pure Appl. Math. 50 (1997), 971-1017. | Zbl | MR
and ,[23] Estimates of the scalar curvature via the method of moving planes II, J. Differential Geom. 49 (1998), 115-178. | Zbl | MR
and ,[24] Prescribing the scalar curvature on , I. A priori estimates, J. Differential Geom. 57 (2001), 67-171. | Zbl | MR
and ,[25] Conformal metrics of prescribed scalar curvature on manifolds: The degree zero case, Preprint 2008.
and ,[26] “Lectures on algebraic topology”, Springer Verlag, Berlin, 1995. | Zbl | MR
,[27] Conformal metrics with prescribed scalar curvature, Invent. Math. 86 (1986), 243-254. | Zbl | MR
and ,[28] Changements de metriques conformes sur la sphere, le problème de Nirenberg, Bull. Sci. Math. 114 (1990), 215-242. | Zbl | MR
,[29] The isometry concentration method in the case of a nonlinear problem with Sobolev critical exponent on compact manifolds with boundary, Bull. Sci. Math. 116 (1992), 35-51. | Zbl | MR
,[30] Prescribing scalar curvature on and related topics, Part I, J. Differential Equations, 120 (1995), 319-410. | Zbl | MR
,[31] Prescribing scalar curvature on and related topics, Part II : existence and compactness, Comm. Pure Appl. Math. 49 (1996), 437-477. | Zbl | MR
,[32] Estimates of the scalar curvature via the method of moving planes III, Comm. Pure Appl. Math. 53 (2000), 611-646. | Zbl | MR
,[33] The concentration compactness principle in the calculus of variations. The limt case, Rev. Mat. Iberoamericana 1 (1985), I:165-201, II: 45-121. | Zbl | MR
,[34] “Lectures on -cobordism”, Princeton University Press, Princeton, N.J., 1965. | Zbl | MR
,[35] The role of Green's function in a nonlinear elliptic equation involving the critical Sobolev exponent, J. Funct. Anal. 89 (1990), 1-52. | Zbl | MR
,[36] Prescribing scalar curvature on , Ann. Inst. H. Poincaré Anal. Non Linéaire 24 (2007), 563-587. | Zbl | MR | mathdoc-id
,[37] Prescribed scalar curvature on the n-sphere, Calc. Var. Partial Differential Equations 4 (1996), 1-25. | Zbl | MR
and ,[38] A flow approach to Nirenberg problem, Duke Math. J. 128 (2005), 19-64. | Zbl | MR
,[39] “Variational methods: Applications to nonlinear PDE Hamilton systems”, Springer-Verlag, Berlin, 1990. | Zbl
,[40] A global compactness result for elliptic boundary value problems involving nonlinearities, Math. Z. 187 (1984), 511-517. | Zbl | MR
,