Voir la notice de l'article provenant de la source Numdam
In this paper, we study triples and of distinct positive integers such that and are all three members of the same binary recurrence sequence.
@article{ASNSP_2008_5_7_4_579_0, author = {Fuchs, Clemens and Luca, Florian and Szalay, Laszlo}, title = {Diophantine triples with values in binary recurrences}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {579--608}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 7}, number = {4}, year = {2008}, mrnumber = {2483637}, zbl = {1193.11032}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ASNSP_2008_5_7_4_579_0/} }
TY - JOUR AU - Fuchs, Clemens AU - Luca, Florian AU - Szalay, Laszlo TI - Diophantine triples with values in binary recurrences JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2008 SP - 579 EP - 608 VL - 7 IS - 4 PB - Scuola Normale Superiore, Pisa UR - http://geodesic.mathdoc.fr/item/ASNSP_2008_5_7_4_579_0/ LA - en ID - ASNSP_2008_5_7_4_579_0 ER -
%0 Journal Article %A Fuchs, Clemens %A Luca, Florian %A Szalay, Laszlo %T Diophantine triples with values in binary recurrences %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2008 %P 579-608 %V 7 %N 4 %I Scuola Normale Superiore, Pisa %U http://geodesic.mathdoc.fr/item/ASNSP_2008_5_7_4_579_0/ %G en %F ASNSP_2008_5_7_4_579_0
Fuchs, Clemens; Luca, Florian; Szalay, Laszlo. Diophantine triples with values in binary recurrences. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 7 (2008) no. 4, pp. 579-608. http://geodesic.mathdoc.fr/item/ASNSP_2008_5_7_4_579_0/
[1] An upper bound for the G 243 (2003), 79-84. | Zbl | MR
, and ,[2] On a problem of Diophantus for higher powers, Math. Proc. Cambridge Philos. Soc. 135 (2003), 1-10. | Zbl | MR
and ,[3] On the period of the continued fraction expansion of square root of , Indag. Math. (N.S.) 16 (2005), 21-35. | Zbl | MR
and ,[4] Diophantine equations with power sums and Universal Hilbert Sets, Indag. Math. (N.S.) 9 (1998), 317-332. | Zbl | MR
and ,[5] A lower bound for the height of a rational function at S-unit points, Monatsh. Math. 144 (2005), 203-224. | Zbl | MR
and ,[6] S-unit points on analytic hypersurfaces, Ann. Sci. École Norm. Sup. (4) 38 (2005), 76-92. | Zbl | MR
and ,[7] There are only finitely many Diophantine quintuples, J. Reine Angew. Math. 566 (2004), 183-214. | Zbl | MR
,[8] Diophantine -tuples, webpage available at http://web.math.hr/duje/ dtuples.html.
,[9] An upper bound for the G.C.D. of two linear recurring sequences, Math. Slovaca 53 (2003), 21-42. | Zbl | MR
,[10] Diophantine problems with linear recurrences via the Subspace Theorem, Integers 5 (2005), #A08. | Zbl | MR
,[11] Polynomial-exponential equations involving multirecurrences, Studia Sci. Math. Hungar., to appear. | Zbl | MR
,[12] Polynomial-exponential equations involving several linear recurrences, Publ. Math. Debrecen 65 (2004), 149-172. | Zbl | MR
and ,[13] On the equation , Acta Arith. 9 (1964), 209-219. | Zbl | MR
,[14] On shifted products which are powers, Glas. Mat. Ser. III 40 (2005), 13-20. | Zbl | MR
,[15] On the greatest common divisor of and with and near -units, Monatsh. Math. 146 (2005), 239-256. | Zbl | MR
,[16] Diophantine equations with products of consecutive terms in Lucas sequences, II, Acta Arith., to appear. | Zbl | MR
and ,[17] Fibonacci Diophantine triples, Glas. Mat. Ser. III 43 (2008), 252-264. | Zbl | MR
and ,[18] Linear equations in members of recurrence sequences, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 20 (1993), 219-246. | Zbl | MR | mathdoc-id
and ,[19] Linear Recurrence Sequences and Polynomial-Exponential Equations, In: “Diophantine Approximation, Proc. of the C.I.M.E. Conference, Cetraro (Italy) 2000”, F. Amoroso, U. Zannier (eds.), Springer-Verlag, LN 1819, 2003, 171-247. | Zbl | MR
,[20] “Exponential Diophantine Equations”, Cambridge Univ. Press, Cambridge, 1986. | Zbl | MR
and ,[21] Generalized greatest common divisors, divisibility sequences, and Vojta's conjecture for blowups, Monats. Math. 145 (2005), 333-350. | Zbl | MR
,[22] -adic logarithmic forms and group varieties, II, Acta Arith. 89 (1999), 337-378. | Zbl | MR
,[23] “Some applications of Diophantine Approximation to Diophantine Equations (with special emphasis on the Schmidt Subspace Theorem)”, Forum, Udine, 2003.
,[24] Diophantine equations with linear recurrences. An overview of some recent progress, J. Théor. Nombres Bordeaux 17 (2005), 423-435. | Zbl | MR | mathdoc-id
,