Voir la notice de l'article provenant de la source Numdam
We consider the Monge-Ampère-type equation , where is the Schouten tensor of a conformally related metric and is a suitably chosen constant. When the scalar curvature is non-positive we give necessary and sufficient conditions for the existence of solutions. When the scalar curvature is positive and the first Betti number of the manifold is non-zero we also establish existence. Moreover, by adapting a construction of Schoen, we show that solutions are in general not unique.
@article{ASNSP_2008_5_7_2_241_0, author = {Gursky, Matthew J.}, title = {A {Monge-Amp\`ere} equation in conformal geometry}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {241--270}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 7}, number = {2}, year = {2008}, mrnumber = {2437027}, zbl = {1192.53045}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ASNSP_2008_5_7_2_241_0/} }
TY - JOUR AU - Gursky, Matthew J. TI - A Monge-Ampère equation in conformal geometry JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2008 SP - 241 EP - 270 VL - 7 IS - 2 PB - Scuola Normale Superiore, Pisa UR - http://geodesic.mathdoc.fr/item/ASNSP_2008_5_7_2_241_0/ LA - en ID - ASNSP_2008_5_7_2_241_0 ER -
%0 Journal Article %A Gursky, Matthew J. %T A Monge-Ampère equation in conformal geometry %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2008 %P 241-270 %V 7 %N 2 %I Scuola Normale Superiore, Pisa %U http://geodesic.mathdoc.fr/item/ASNSP_2008_5_7_2_241_0/ %G en %F ASNSP_2008_5_7_2_241_0
Gursky, Matthew J. A Monge-Ampère equation in conformal geometry. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 7 (2008) no. 2, pp. 241-270. http://geodesic.mathdoc.fr/item/ASNSP_2008_5_7_2_241_0/