Extensions of the Cugiani-Mahler theorem
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 6 (2007) no. 3, pp. 477-498

Voir la notice de l'article provenant de la source Numdam

In 1955, Roth established that if ξ is an irrational number such that there are a positive real number ε and infinitely many rational numbers p/q with q1 and |ξ-p/q|<q -2-ε , then ξ is transcendental. A few years later, Cugiani obtained the same conclusion with ε replaced by a function qε(q) that decreases very slowly to zero, provided that the sequence of rational solutions to |ξ-p/q|<q -2-ε(q) is sufficiently dense, in a suitable sense. We give an alternative, and much simpler, proof of Cugiani’s Theorem and extend it to simultaneous approximation.

Classification : 11J68
@article{ASNSP_2007_5_6_3_477_0,
     author = {Bugeaud, Yann},
     title = {Extensions of the {Cugiani-Mahler} theorem},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     pages = {477--498},
     publisher = {Scuola Normale Superiore, Pisa},
     volume = {Ser. 5, 6},
     number = {3},
     year = {2007},
     mrnumber = {2370270},
     zbl = {1139.11032},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ASNSP_2007_5_6_3_477_0/}
}
TY  - JOUR
AU  - Bugeaud, Yann
TI  - Extensions of the Cugiani-Mahler theorem
JO  - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY  - 2007
SP  - 477
EP  - 498
VL  - 6
IS  - 3
PB  - Scuola Normale Superiore, Pisa
UR  - http://geodesic.mathdoc.fr/item/ASNSP_2007_5_6_3_477_0/
LA  - en
ID  - ASNSP_2007_5_6_3_477_0
ER  - 
%0 Journal Article
%A Bugeaud, Yann
%T Extensions of the Cugiani-Mahler theorem
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 2007
%P 477-498
%V 6
%N 3
%I Scuola Normale Superiore, Pisa
%U http://geodesic.mathdoc.fr/item/ASNSP_2007_5_6_3_477_0/
%G en
%F ASNSP_2007_5_6_3_477_0
Bugeaud, Yann. Extensions of the Cugiani-Mahler theorem. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 6 (2007) no. 3, pp. 477-498. http://geodesic.mathdoc.fr/item/ASNSP_2007_5_6_3_477_0/