Voir la notice de l'article provenant de la source Numdam
We give a characterization of the geometric automorphisms in a certain class of (not necessarily irreducible) free group automorphisms. When the automorphism is geometric, then it is induced by a pseudo-Anosov homeomorphism without interior singularities. An outer free group automorphism is given by a -cocycle of a -complex (a standard dynamical branched surface, see [7] and [9]) the fundamental group of which is the mapping-torus group of the automorphism. A combinatorial construction elucidates the link between this new representation (first introduced in [16]) and the classical representation of a free group automorphism by a graph-map [2].
@article{ASNSP_2007_5_6_3_405_0, author = {Gautero, Fran\c{c}ois}, title = {Combinatorial mapping-torus, branched surfaces and free group automorphisms}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {405--440}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 6}, number = {3}, year = {2007}, mrnumber = {2370267}, zbl = {1173.20017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ASNSP_2007_5_6_3_405_0/} }
TY - JOUR AU - Gautero, François TI - Combinatorial mapping-torus, branched surfaces and free group automorphisms JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2007 SP - 405 EP - 440 VL - 6 IS - 3 PB - Scuola Normale Superiore, Pisa UR - http://geodesic.mathdoc.fr/item/ASNSP_2007_5_6_3_405_0/ LA - en ID - ASNSP_2007_5_6_3_405_0 ER -
%0 Journal Article %A Gautero, François %T Combinatorial mapping-torus, branched surfaces and free group automorphisms %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2007 %P 405-440 %V 6 %N 3 %I Scuola Normale Superiore, Pisa %U http://geodesic.mathdoc.fr/item/ASNSP_2007_5_6_3_405_0/ %G en %F ASNSP_2007_5_6_3_405_0
Gautero, François. Combinatorial mapping-torus, branched surfaces and free group automorphisms. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 6 (2007) no. 3, pp. 405-440. http://geodesic.mathdoc.fr/item/ASNSP_2007_5_6_3_405_0/