Voir la notice de l'article provenant de la source Numdam
The div-curl lemma, one of the basic results of the theory of compensated compactness of Murat and Tartar, does not take over to the case in which the two factors two-scale converge in the sense of Nguetseng. A suitable modification of the differential operators however allows for this extension. The argument follows the lines of a well-known paper of F. Murat of 1978, and uses a two-scale extension of the Fourier transform. This result is also extended to time-dependent functions, and is applied to a two-scale formulation of the Maxwell system of electromagnetism, that accounts for the energy embedded in both coarse- and fine-scale oscillations.
@article{ASNSP_2007_5_6_2_291_0, author = {Visintin, Augusto}, title = {Two-scale div-curl lemma}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {291--321}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 6}, number = {2}, year = {2007}, mrnumber = {2352520}, zbl = {1184.35040}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ASNSP_2007_5_6_2_291_0/} }
TY - JOUR AU - Visintin, Augusto TI - Two-scale div-curl lemma JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2007 SP - 291 EP - 321 VL - 6 IS - 2 PB - Scuola Normale Superiore, Pisa UR - http://geodesic.mathdoc.fr/item/ASNSP_2007_5_6_2_291_0/ LA - en ID - ASNSP_2007_5_6_2_291_0 ER -
Visintin, Augusto. Two-scale div-curl lemma. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 6 (2007) no. 2, pp. 291-321. http://geodesic.mathdoc.fr/item/ASNSP_2007_5_6_2_291_0/