Counting lines on surfaces
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 6 (2007) no. 1, pp. 39-52

Voir la notice de l'article provenant de la source Numdam

This paper deals with surfaces with many lines. It is well-known that a cubic contains 27 of them and that the maximal number for a quartic is 64. In higher degree the question remains open. Here we study classical and new constructions of surfaces with high number of lines. We obtain a symmetric octic with 352 lines, and give examples of surfaces of degree d containing a sequence of d(d-2)+4 skew lines.

Classification : 14N10, 14Q10
@article{ASNSP_2007_5_6_1_39_0,
     author = {Boissi\`ere, Samuel and Sarti, Alessandra},
     title = {Counting lines on surfaces},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     pages = {39--52},
     publisher = {Scuola Normale Superiore, Pisa},
     volume = {Ser. 5, 6},
     number = {1},
     year = {2007},
     mrnumber = {2341513},
     zbl = {1150.14013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ASNSP_2007_5_6_1_39_0/}
}
TY  - JOUR
AU  - Boissière, Samuel
AU  - Sarti, Alessandra
TI  - Counting lines on surfaces
JO  - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY  - 2007
SP  - 39
EP  - 52
VL  - 6
IS  - 1
PB  - Scuola Normale Superiore, Pisa
UR  - http://geodesic.mathdoc.fr/item/ASNSP_2007_5_6_1_39_0/
LA  - en
ID  - ASNSP_2007_5_6_1_39_0
ER  - 
%0 Journal Article
%A Boissière, Samuel
%A Sarti, Alessandra
%T Counting lines on surfaces
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 2007
%P 39-52
%V 6
%N 1
%I Scuola Normale Superiore, Pisa
%U http://geodesic.mathdoc.fr/item/ASNSP_2007_5_6_1_39_0/
%G en
%F ASNSP_2007_5_6_1_39_0
Boissière, Samuel; Sarti, Alessandra. Counting lines on surfaces. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 6 (2007) no. 1, pp. 39-52. http://geodesic.mathdoc.fr/item/ASNSP_2007_5_6_1_39_0/