Voir la notice de l'article provenant de la source Numdam
This paper deals with surfaces with many lines. It is well-known that a cubic contains of them and that the maximal number for a quartic is . In higher degree the question remains open. Here we study classical and new constructions of surfaces with high number of lines. We obtain a symmetric octic with lines, and give examples of surfaces of degree containing a sequence of skew lines.
@article{ASNSP_2007_5_6_1_39_0, author = {Boissi\`ere, Samuel and Sarti, Alessandra}, title = {Counting lines on surfaces}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {39--52}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 6}, number = {1}, year = {2007}, mrnumber = {2341513}, zbl = {1150.14013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ASNSP_2007_5_6_1_39_0/} }
TY - JOUR AU - Boissière, Samuel AU - Sarti, Alessandra TI - Counting lines on surfaces JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2007 SP - 39 EP - 52 VL - 6 IS - 1 PB - Scuola Normale Superiore, Pisa UR - http://geodesic.mathdoc.fr/item/ASNSP_2007_5_6_1_39_0/ LA - en ID - ASNSP_2007_5_6_1_39_0 ER -
%0 Journal Article %A Boissière, Samuel %A Sarti, Alessandra %T Counting lines on surfaces %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2007 %P 39-52 %V 6 %N 1 %I Scuola Normale Superiore, Pisa %U http://geodesic.mathdoc.fr/item/ASNSP_2007_5_6_1_39_0/ %G en %F ASNSP_2007_5_6_1_39_0
Boissière, Samuel; Sarti, Alessandra. Counting lines on surfaces. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 6 (2007) no. 1, pp. 39-52. http://geodesic.mathdoc.fr/item/ASNSP_2007_5_6_1_39_0/