Locating the boundary peaks of least-energy solutions to a singularly perturbed Dirichlet problem
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 5 (2006) no. 2, pp. 219-259

Voir la notice de l'article provenant de la source Numdam

We consider the problemwhere Ω 3 is a smooth and bounded domain, ε,γ 1 ,γ 2 >0, v,V:Ω, f:. We prove that this system has a least-energy solution v ε which develops, as ε0 + , a single spike layer located near the boundary, in striking contrast with the result in [37] for the single Schrödinger equation. Moreover the unique peak approaches the most curved part of Ω, i.e., where the boundary mean curvature assumes its maximum. Thus this elliptic system, even though it is a Dirichlet problem, acts more like a Neumann problem for the single-equation case. The technique employed is based on the so-called energy method, which consists in the derivation of an asymptotic expansion for the energy of the solutions in powers of ε up to sixth order; from the analysis of the main terms of the energy expansion we derive the location of the peak in Ω.

Classification : 35B40, 35B45, 35J55, 92C15, 92C40
@article{ASNSP_2006_5_5_2_219_0,
     author = {D{\textquoteright}Aprile, Teresa},
     title = {Locating the boundary peaks of least-energy solutions to a singularly perturbed {Dirichlet} problem},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     pages = {219--259},
     publisher = {Scuola Normale Superiore, Pisa},
     volume = {Ser. 5, 5},
     number = {2},
     year = {2006},
     mrnumber = {2244699},
     zbl = {1150.35006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ASNSP_2006_5_5_2_219_0/}
}
TY  - JOUR
AU  - D’Aprile, Teresa
TI  - Locating the boundary peaks of least-energy solutions to a singularly perturbed Dirichlet problem
JO  - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY  - 2006
SP  - 219
EP  - 259
VL  - 5
IS  - 2
PB  - Scuola Normale Superiore, Pisa
UR  - http://geodesic.mathdoc.fr/item/ASNSP_2006_5_5_2_219_0/
LA  - en
ID  - ASNSP_2006_5_5_2_219_0
ER  - 
%0 Journal Article
%A D’Aprile, Teresa
%T Locating the boundary peaks of least-energy solutions to a singularly perturbed Dirichlet problem
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 2006
%P 219-259
%V 5
%N 2
%I Scuola Normale Superiore, Pisa
%U http://geodesic.mathdoc.fr/item/ASNSP_2006_5_5_2_219_0/
%G en
%F ASNSP_2006_5_5_2_219_0
D’Aprile, Teresa. Locating the boundary peaks of least-energy solutions to a singularly perturbed Dirichlet problem. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 5 (2006) no. 2, pp. 219-259. http://geodesic.mathdoc.fr/item/ASNSP_2006_5_5_2_219_0/