Voir la notice de l'article provenant de la source Numdam
We consider the problemwhere is a smooth and bounded domain, , . We prove that this system has a least-energy solution which develops, as , a single spike layer located near the boundary, in striking contrast with the result in [37] for the single Schrödinger equation. Moreover the unique peak approaches the most curved part of , i.e., where the boundary mean curvature assumes its maximum. Thus this elliptic system, even though it is a Dirichlet problem, acts more like a Neumann problem for the single-equation case. The technique employed is based on the so-called energy method, which consists in the derivation of an asymptotic expansion for the energy of the solutions in powers of up to sixth order; from the analysis of the main terms of the energy expansion we derive the location of the peak in .
@article{ASNSP_2006_5_5_2_219_0, author = {D{\textquoteright}Aprile, Teresa}, title = {Locating the boundary peaks of least-energy solutions to a singularly perturbed {Dirichlet} problem}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {219--259}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 5}, number = {2}, year = {2006}, mrnumber = {2244699}, zbl = {1150.35006}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ASNSP_2006_5_5_2_219_0/} }
TY - JOUR AU - D’Aprile, Teresa TI - Locating the boundary peaks of least-energy solutions to a singularly perturbed Dirichlet problem JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2006 SP - 219 EP - 259 VL - 5 IS - 2 PB - Scuola Normale Superiore, Pisa UR - http://geodesic.mathdoc.fr/item/ASNSP_2006_5_5_2_219_0/ LA - en ID - ASNSP_2006_5_5_2_219_0 ER -
%0 Journal Article %A D’Aprile, Teresa %T Locating the boundary peaks of least-energy solutions to a singularly perturbed Dirichlet problem %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2006 %P 219-259 %V 5 %N 2 %I Scuola Normale Superiore, Pisa %U http://geodesic.mathdoc.fr/item/ASNSP_2006_5_5_2_219_0/ %G en %F ASNSP_2006_5_5_2_219_0
D’Aprile, Teresa. Locating the boundary peaks of least-energy solutions to a singularly perturbed Dirichlet problem. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 5 (2006) no. 2, pp. 219-259. http://geodesic.mathdoc.fr/item/ASNSP_2006_5_5_2_219_0/