Voir la notice de l'article provenant de la source Numdam
On any real semisimple Lie group we consider a one-parameter family of left-invariant naturally reductive metrics. Their geodesic flow in terms of Killing curves, the Levi Civita connection and the main curvature properties are explicitly computed. Furthermore we present a group theoretical revisitation of a classical realization of all simply connected 3-dimensional manifolds with a transitive group of isometries due to L. Bianchi and É. Cartan. As a consequence one obtains a characterization of all naturally reductive left-invariant riemannian metrics of .
@article{ASNSP_2006_5_5_2_171_0, author = {Halverscheid, Stefan and Iannuzzi, Andrea}, title = {On naturally reductive left-invariant metrics of ${\rm SL}(2,\mathbb {R})$}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {171--187}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 5}, number = {2}, year = {2006}, mrnumber = {2244697}, zbl = {1150.53015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ASNSP_2006_5_5_2_171_0/} }
TY - JOUR AU - Halverscheid, Stefan AU - Iannuzzi, Andrea TI - On naturally reductive left-invariant metrics of ${\rm SL}(2,\mathbb {R})$ JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2006 SP - 171 EP - 187 VL - 5 IS - 2 PB - Scuola Normale Superiore, Pisa UR - http://geodesic.mathdoc.fr/item/ASNSP_2006_5_5_2_171_0/ LA - en ID - ASNSP_2006_5_5_2_171_0 ER -
%0 Journal Article %A Halverscheid, Stefan %A Iannuzzi, Andrea %T On naturally reductive left-invariant metrics of ${\rm SL}(2,\mathbb {R})$ %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2006 %P 171-187 %V 5 %N 2 %I Scuola Normale Superiore, Pisa %U http://geodesic.mathdoc.fr/item/ASNSP_2006_5_5_2_171_0/ %G en %F ASNSP_2006_5_5_2_171_0
Halverscheid, Stefan; Iannuzzi, Andrea. On naturally reductive left-invariant metrics of ${\rm SL}(2,\mathbb {R})$. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 5 (2006) no. 2, pp. 171-187. http://geodesic.mathdoc.fr/item/ASNSP_2006_5_5_2_171_0/