Voir la notice de l'article provenant de la source Numdam
The Hartogs Theorem for holomorphic functions is generalized in two settings: a CR version (Theorem 1.2) and a corresponding theorem based on it for -closed forms at the critical degree, (Theorem 1.1). Part of Frenkel’s lemma in category is also proved.
@article{ASNSP_2006_5_5_1_21_0, author = {Chang, Chin-Huei and Lee, Hsuan-Pei}, title = {Hartogs theorem for forms : solvability of {Cauchy-Riemann} operator at critical degree}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {21--37}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 5}, number = {1}, year = {2006}, mrnumber = {2240164}, zbl = {1170.32303}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ASNSP_2006_5_5_1_21_0/} }
TY - JOUR AU - Chang, Chin-Huei AU - Lee, Hsuan-Pei TI - Hartogs theorem for forms : solvability of Cauchy-Riemann operator at critical degree JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2006 SP - 21 EP - 37 VL - 5 IS - 1 PB - Scuola Normale Superiore, Pisa UR - http://geodesic.mathdoc.fr/item/ASNSP_2006_5_5_1_21_0/ LA - en ID - ASNSP_2006_5_5_1_21_0 ER -
%0 Journal Article %A Chang, Chin-Huei %A Lee, Hsuan-Pei %T Hartogs theorem for forms : solvability of Cauchy-Riemann operator at critical degree %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2006 %P 21-37 %V 5 %N 1 %I Scuola Normale Superiore, Pisa %U http://geodesic.mathdoc.fr/item/ASNSP_2006_5_5_1_21_0/ %G en %F ASNSP_2006_5_5_1_21_0
Chang, Chin-Huei; Lee, Hsuan-Pei. Hartogs theorem for forms : solvability of Cauchy-Riemann operator at critical degree. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 5 (2006) no. 1, pp. 21-37. http://geodesic.mathdoc.fr/item/ASNSP_2006_5_5_1_21_0/