Voir la notice de l'article provenant de la source Numdam
For , , , let be the -th polylogarithm of . We prove that for any non-zero algebraic number such that , the -vector space spanned by has infinite dimension. This result extends a previous one by Rivoal for rational . The main tool is a method introduced by Fischler and Rivoal, which shows the coefficients of the polylogarithms in the relevant series to be the unique solution of a suitable Padé approximation problem.
@article{ASNSP_2006_5_5_1_1_0, author = {Marcovecchio, Raffaele}, title = {Linear independence of linear forms in polylogarithms}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {1--11}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 5}, number = {1}, year = {2006}, mrnumber = {2240162}, zbl = {1114.11063}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ASNSP_2006_5_5_1_1_0/} }
TY - JOUR AU - Marcovecchio, Raffaele TI - Linear independence of linear forms in polylogarithms JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2006 SP - 1 EP - 11 VL - 5 IS - 1 PB - Scuola Normale Superiore, Pisa UR - http://geodesic.mathdoc.fr/item/ASNSP_2006_5_5_1_1_0/ LA - en ID - ASNSP_2006_5_5_1_1_0 ER -
%0 Journal Article %A Marcovecchio, Raffaele %T Linear independence of linear forms in polylogarithms %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2006 %P 1-11 %V 5 %N 1 %I Scuola Normale Superiore, Pisa %U http://geodesic.mathdoc.fr/item/ASNSP_2006_5_5_1_1_0/ %G en %F ASNSP_2006_5_5_1_1_0
Marcovecchio, Raffaele. Linear independence of linear forms in polylogarithms. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 5 (2006) no. 1, pp. 1-11. http://geodesic.mathdoc.fr/item/ASNSP_2006_5_5_1_1_0/