Voir la notice de l'article provenant de la source Numdam
We study the validity of the inequality for the Riesz transform when and of its reverse inequality when on complete riemannian manifolds under the doubling property and some Poincaré inequalities.
Auscher, Pascal 1 ; Coulhon, Thierry 2
@article{ASNSP_2005_5_4_3_531_0, author = {Auscher, Pascal and Coulhon, Thierry}, title = {Riesz transform on manifolds and {Poincar\'e} inequalitie}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {531--555}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 4}, number = {3}, year = {2005}, mrnumber = {2185868}, zbl = {1116.58023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ASNSP_2005_5_4_3_531_0/} }
TY - JOUR AU - Auscher, Pascal AU - Coulhon, Thierry TI - Riesz transform on manifolds and Poincaré inequalitie JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2005 SP - 531 EP - 555 VL - 4 IS - 3 PB - Scuola Normale Superiore, Pisa UR - http://geodesic.mathdoc.fr/item/ASNSP_2005_5_4_3_531_0/ LA - en ID - ASNSP_2005_5_4_3_531_0 ER -
%0 Journal Article %A Auscher, Pascal %A Coulhon, Thierry %T Riesz transform on manifolds and Poincaré inequalitie %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2005 %P 531-555 %V 4 %N 3 %I Scuola Normale Superiore, Pisa %U http://geodesic.mathdoc.fr/item/ASNSP_2005_5_4_3_531_0/ %G en %F ASNSP_2005_5_4_3_531_0
Auscher, Pascal; Coulhon, Thierry. Riesz transform on manifolds and Poincaré inequalitie. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 4 (2005) no. 3, pp. 531-555. http://geodesic.mathdoc.fr/item/ASNSP_2005_5_4_3_531_0/
[1] On -estimates for square roots of second order elliptic operators on , Publ. Mat. 48 (2004), 159-186. | Zbl | MR
,[2] Riesz transforms on manifolds and heat kernel regularity, Ann. Sci. École Norm. Sup. 37 (2004), 911-95. | Zbl | MR | mathdoc-id
, , and ,[3] Weighted norm inequalities off-diagonal estimates and elliptic operators: Part I, preprint 2005. | MR
and ,[4] “Square Root Problem for Divergence Operators and Related Topics”, Astérisque, 249, 1998. | Zbl | MR | mathdoc-id
and ,[5] Transformations de Riesz pour les semi-groupes symétriques | Zbl | MR | mathdoc-id
,[6] Calderón-Zygmund theory for non-integral operators and the functional calculus, Rev. Mat. Iberoamericana 19 (2003), 919-942. | Zbl | MR
and ,[7] Riesz transform and cohomology for manifolds with Euclidean ends, Duke Math. J., to appear. | Zbl | MR
, and ,[8] Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), 569-645. | Zbl | MR
and ,[9] Riesz transforms for , Trans. Amer. Math. Soc. 351 (1999), 1151-1169. | Zbl | MR
and ,[10] Riesz transform and related inequalities on non-compact Riemannian manifolds, Comm. Pure Appl. Math. 56, 12 (2003), 1728-1751. | Zbl | MR
and ,[11] Estimations inférieures du noyau de la chaleur sur les variétés coniques et transformée de Riesz, Arch. Math. 83 (2004), 229-242. | Zbl | MR
and ,[12] Self-improving properties of John-Nirenberg and Poincaré inequalities on spaces of homogeneous type, J. Funct. Anal. 153 (1998), 108-146. | Zbl | MR
, and ,[13] The -integrability of the partial derivatives of a quasiconformal mapping, Acta Math. 130 (1973), 265-277. | Zbl | MR
,[14] “Multiple Integrals in the Calculus of Variations and Non-linear Elliptic Systems”, Annals of Math. Studies, vol. 105, Princeton Univ. Press, 1983. | Zbl | MR
,[15] Stochastically complete manifolds, (Russian) Dokl. Akad. Nauk SSSR 290 (1986), 534-537. | Zbl | MR
,[16] Upper bounds of derivatives of the heat kernel on an arbitrary complete manifold, J. Funct. Anal. 127 (1995), 363-389. | Zbl | MR
,[17] Stability results for Harnack inequalities, Ann. Inst. Fourier (Grenoble) 55 (2005), 825-890. | Zbl | MR | mathdoc-id
and ,[18] “Sobolev Met Poincaré”, Mem. Amer. Math. Soc., Vol. 145, no. 688, 2000. | Zbl | MR
and ,[19] bounds for Riesz transforms and square roots associated to second order elliptic operators, Publ. Mat. 47 (2003), 497-515. | Zbl | MR
and ,[20] The Gehring lemma, In: “Quasiconformal Mappings and Analysis” (Ann. Arbor, MI, 1995), Springer, New York, 1998, 181-204. | Zbl | MR
,[21] The Poincaré inequality is an open ended condition, preprint 2003. | MR
and ,[22] La transformation de Riesz sur les variétés coniques, J. Funct. Anal. 168 (1999), 145-238. | Zbl | MR
,[23] PhD thesis, Universidad Autónoma de Madrid, 2003.
,[24] An estimate for the gradient of solutions of second order elliptic divergence equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3), 17 (1963), 189-206. | Zbl | MR | mathdoc-id
,[25] A note on Poincaré, Sobolev and Harnack inequalities, Internat. Math. Res. Notices 2 (1992), 27-38. | Zbl | MR
,[26] Parabolic Harnack inequality for divergence form second order differential operators, Potential Anal. (4), 4 (1995), 429-467. | Zbl | MR
,[27] Bounds of Riesz transforms on spaces for second order elliptic operators, Ann. Inst. Fourier (Grenoble) 55 (2005), 173-197. | Zbl | MR | mathdoc-id
,[28] “Singular Integrals and Differentiability Properties of Functions”, Princeton Univ. Press, 1970. | Zbl | MR
,[29] “Topics in Harmonic Analysis Related to the Littlewood-Paley Theory”, Princeton Univ. Press, 1970. | Zbl | MR
,