Continuity of solutions to a basic problem in the calculus of variations
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 4 (2005) no. 3, pp. 511-530

Voir la notice de l'article provenant de la source Numdam

We study the problem of minimizing Ω F(Du(x))dx over the functions uW 1,1 (Ω) that assume given boundary values φ on Γ:=Ω. The lagrangian F and the domain Ω are assumed convex. A new type of hypothesis on the boundary function φ is introduced: the lower (or upper) bounded slope condition. This condition, which is less restrictive than the familiar bounded slope condition of Hartman, Nirenberg and Stampacchia, allows us to extend the classical Hilbert-Haar regularity theory to the case of semiconvex (or semiconcave) boundary data (instead of C 2 ). We prove in particular that the solution is locally Lipschitz in Ω. In certain cases, as when Γ is a polyhedron or else of class C 1,1 , we obtain in addition a global Hölder condition on Ω ¯.

Classification : 49J10, 35J20

Clarke, Francis 1

1 Institut universitaire de France Université Claude Bernard Lyon 1, France
@article{ASNSP_2005_5_4_3_511_0,
     author = {Clarke, Francis},
     title = {Continuity of solutions to a basic problem in the calculus of variations},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     pages = {511--530},
     publisher = {Scuola Normale Superiore, Pisa},
     volume = {Ser. 5, 4},
     number = {3},
     year = {2005},
     mrnumber = {2185867},
     zbl = {1127.49001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ASNSP_2005_5_4_3_511_0/}
}
TY  - JOUR
AU  - Clarke, Francis
TI  - Continuity of solutions to a basic problem in the calculus of variations
JO  - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY  - 2005
SP  - 511
EP  - 530
VL  - 4
IS  - 3
PB  - Scuola Normale Superiore, Pisa
UR  - http://geodesic.mathdoc.fr/item/ASNSP_2005_5_4_3_511_0/
LA  - en
ID  - ASNSP_2005_5_4_3_511_0
ER  - 
%0 Journal Article
%A Clarke, Francis
%T Continuity of solutions to a basic problem in the calculus of variations
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 2005
%P 511-530
%V 4
%N 3
%I Scuola Normale Superiore, Pisa
%U http://geodesic.mathdoc.fr/item/ASNSP_2005_5_4_3_511_0/
%G en
%F ASNSP_2005_5_4_3_511_0
Clarke, Francis. Continuity of solutions to a basic problem in the calculus of variations. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 4 (2005) no. 3, pp. 511-530. http://geodesic.mathdoc.fr/item/ASNSP_2005_5_4_3_511_0/