Voir la notice de l'article provenant de la source Numdam
We prove some Hardy-type inequalities related to quasilinear second-order degenerate elliptic differential operators . If is a positive weight such that , then the Hardy-type inequalityholds. We find an explicit value of the constant involved, which, in most cases, results optimal. As particular case we derive Hardy inequalities for subelliptic operators on Carnot Groups.
D’Ambrosio, Lorenzo 1
@article{ASNSP_2005_5_4_3_451_0, author = {D{\textquoteright}Ambrosio, Lorenzo}, title = {Hardy-type inequalities related to degenerate elliptic differential operators}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {451--486}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 4}, number = {3}, year = {2005}, mrnumber = {2185865}, zbl = {1170.35372}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ASNSP_2005_5_4_3_451_0/} }
TY - JOUR AU - D’Ambrosio, Lorenzo TI - Hardy-type inequalities related to degenerate elliptic differential operators JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2005 SP - 451 EP - 486 VL - 4 IS - 3 PB - Scuola Normale Superiore, Pisa UR - http://geodesic.mathdoc.fr/item/ASNSP_2005_5_4_3_451_0/ LA - en ID - ASNSP_2005_5_4_3_451_0 ER -
%0 Journal Article %A D’Ambrosio, Lorenzo %T Hardy-type inequalities related to degenerate elliptic differential operators %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2005 %P 451-486 %V 4 %N 3 %I Scuola Normale Superiore, Pisa %U http://geodesic.mathdoc.fr/item/ASNSP_2005_5_4_3_451_0/ %G en %F ASNSP_2005_5_4_3_451_0
D’Ambrosio, Lorenzo. Hardy-type inequalities related to degenerate elliptic differential operators. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 4 (2005) no. 3, pp. 451-486. http://geodesic.mathdoc.fr/item/ASNSP_2005_5_4_3_451_0/
[1] Singular solutions, homogeneous norms, and quasiconformal mappings in Carnot groups, Math. Ann. 324 (2002), 159-186. | Zbl | MR
, and ,[2] Polar coordinates in Carnot groups, Math. Z. 241 (2002), 697-730. | Zbl | MR
and ,[3] The heat equation with a singular potential, Trans. Amer. Math. Soc. 284 (1984), 121-139. | Zbl | MR
and ,[4] Series expansion for Hardy inequalities, Indiana Univ. Math. J. 52 (2003), 171-190. | Zbl | MR
, and ,[5] A unified approach to improved Hardy inequalities with best constants, Trans. Amer. Math. Soc. 356 (2004), 2169-2196. | Zbl | MR
, and ,[6] The P-Laplace Equation on a class of Grushin-type Spaces, Proc. Amer. Math. Soc., to appear. | Zbl | MR
and ,[7] A Note on Lifting of Carnot groups, Rev. Mat. Iberoamericana. To appear. | Zbl | MR | EuDML
and ,[8] Nonlinear Liouville theorems for some critical problems on H-type groups, J. Funct. Anal. 207 (2004), 161-215. | Zbl | MR
and ,[9] Some simple nonlinear PDE's without solutions, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 1 (1998), 223-262. | Zbl | MR | EuDML
and ,[10] Hardy's inequalities revisited, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 25 (1997), 217-237 (1998). Dedicated to Ennio De Giorgi. | Zbl | MR | mathdoc-id
and ,[11] Extremal functions for Hardy's inequality with weight, J. Funct. Anal. 171 (2000), 177-191. | Zbl | MR
, and ,[12] Blow-up solutions of some nonlinear elliptic problems, Rev. Mat. Univ. Complut. Madrid 10 (1997), 443-469. | Zbl | MR
and ,[13] Regularity for quasilinear equations and -quasiconformal maps in Carnot groups, Math. Ann. 313 (1999), no. 2, 263-295. | Zbl | MR
,[14] An embedding theorem and the Harnack inequality for nonlinear subelliptic equations, Comm. Partial Differential Equations 18 (1993), 1765-1794. | Zbl | MR
, and ,[15] Capacitary estimates and the local behavior of solutions of nonlinear subelliptic equations, Amer. J. Math. 118 (1996), 1153-1196. | Zbl | MR
, and ,[16] Inégalités de Hardy sur les variétés riemanniennes non-compactes, J. Math. Pures Appl. (9) 76 (1997), 883-891. | Zbl | MR
,[17] Subadditivity of homogeneous norms on certain nilpotent Lie groups, Proc. Amer. Math. Soc. 83 (1981), 69-70. | Zbl | MR
,[18] Hardy inequalities related to Grushin type operators, Proc. Amer. Math. Soc. 132 (2004), 725-734. | Zbl | MR
,[19] Some Hardy Inequalities on the Heisenberg Group, Differential Equations 40 (2004), 552-564. | Zbl | MR
,[20] Nonlinear Liouville theorems for Grushin and Tricomi operators, J. Differential Equations 193 (2003), 511-541. | Zbl | MR
and ,[21] Representation Formulae and Inequalities for Solutions od a Class of Second Order Partial Differential Equations, Trans. Amer. Math. Soc. (2005), PII S 0002-9947(05)03717-7. | Zbl | MR
, and ,[22] Notions of convexity in Carnot groups, Comm. Anal. Geom. 11 (2003), 263-341. | Zbl | MR
, and ,[23] The Hardy constant, Q. J. Math. (2) 46 (1995), 417-431. | Zbl | MR
,[24] Explicit constants for Rellich inequalities in , Math. Z. 227 (1998), 511-523. | Zbl | MR
and ,[25] Subelliptic estimates and function spaces on nilpotent Lie groups, Ark. Mat. 13 (1975), 161-207. | Zbl | MR
,[26] “ Hardy spaces on homogeneous groups”, volume 28 of Mathematical Notes, Princeton University Press, Princeton, N.J., 1982. | Zbl | MR
and ,[27] Capacités, mouvement brownien et problème de l'épine de Lebesgue sur les groupes de Lie nilpotents, In: “Probability measures on groups”, Oberwolfach, 1981, volume 928 of Lecture Notes in Math., Springer, Berlin, pp. 96-120. | Zbl | MR
,[28] Hardy inequalities and some critical elliptic and parabolic problems, J. Differential Equations 144 (1998), 441-476. | Zbl | MR
and ,[29] Frequency functions on the Heisenberg group, the uncertainty principle and unique continuation, Ann. Inst. Fourier (Grenoble) 40 (1990), 313-356. | Zbl | MR | mathdoc-id
and ,[30] Symmetry properties of positive entire solutions of Yamabe-type equations on groups of Heisenberg type, Duke Math. J. 106 (2001), 411-448. | Zbl | MR
and ,[31] Hardy inequalities with optimal constants and remainder terms, Trans. Amer. Math. Soc. 356 (2004), 2149-2168. | Zbl | MR
, and ,[32] On a degenerate heat equation with a singular potential, J. Funct. Anal. 186 (2001), 342-359. | Zbl | MR
and ,[33] A fundamental solution for a nonelliptic partial differential operator, Canad. J. Math. 31 (1979), 1107-1120. | Zbl | MR
,[34] Calculus on Carnot groups, In: “Fall School in Analysis” (Jyväskylä, 1994), volume 68 of Report . Univ. Jyväskylä, Jyväskylä, pp. 1-31. | Zbl | MR
,[35] Quasiregular maps on Carnot groups, J. Geom. Anal. 7 (1997), 109-148. | Zbl | MR
and ,[36] Fundamental solutions for a class of hypoelliptic PDE generated by composition of quadratic forms, Trans. Amer. Math. Soc. 258 (1980), 147-153. | Zbl | MR
,[37] Nonlinear degenerate parabolic equations for Baouendi-Grushin operators (2004), preprint. | MR
,[38] Convex functions on the Heisenberg group, Calc. Var. Partial Differential Equations 19 (2004), 1-22. | Zbl | MR
, and ,[39] Lipschitz continuity, Aleksandrov theorem and characterizations for H-convex function (2003). URL http://cvgmt.sns.it/papers/mag03a, Preprint. | MR
,[40] On the best constant for Hardy’s inequality in , Trans. Amer. Math. Soc. 350 (1998), 3237-3255. | Zbl | MR
, and ,[41] The best possible constant in generalized Hardy’s inequality for convex domain in , Nonlinear Anal. 28 (1997), 1601-1610. | Zbl | MR
and ,[42] The sharp constant in Hardy's inequality for complement of bounded domain, Nonlinear Anal. 33 (1998), 105-120. | Zbl | MR
and ,[43] “Sobolev spaces”, Springer Series in Soviet Mathematics. Springer-Verlag, Berlin 1985. Translated from the Russian by T. O. Shaposhnikova. | MR
,[44] A simple approach to Hardy inequalities, Mat. Zametki 67 (2000), 563-572. | Zbl | MR
,[45] Nonexistence of weak solutions for some degenerate elliptic and parabolic problems on , J. Evol. Equ. 1 (2001), 189-220. | Zbl | MR
and ,[46] A priori estimates and blow-up of solutions of nonlinear partial differential equations and inequalities, Proc. Steklov Inst. Math. 234 (2001), 1-362. | Zbl | MR
and ,[47] Hardy-type and Rellich type inequalities on the Heisenberg group, Proc. Amer. Math. Soc. 129 (2001), 3623-3630. | Zbl | MR
, and ,[48] Remarks on a Hardy-Sobolev inequality, C. R. Math. Acad. Sci. Paris 336 (2003), 811-815. | Zbl | MR
, and ,[49] The Hardy inequality and the asymptotic behaviour of the heat equation with an inverse-square potential, J. Funct. Anal. 173 (2000), 103-153. | Zbl | MR
and ,[50] Hardy-type inequalities and Pohozaev-type identities for a class of -degenerate subelliptic operators and applications, Nonlinear Anal. 54 (2003), 165-186. | Zbl | MR
and ,