Voir la notice de l'article provenant de la source Numdam
We investigate a weighted version of Hausdorff dimension introduced by V. Afraimovich, where the weights are determined by recurrence times. We do this for an ergodic invariant measure with positive entropy of a piecewise monotonic transformation on the interval , giving first a local result and proving then a formula for the dimension of the measure in terms of entropy and characteristic exponent. This is later used to give a relation between the dimension of a closed invariant subset and a pressure function.
Hofbauer, Franz 1
@article{ASNSP_2005_5_4_3_439_0, author = {Hofbauer, Franz}, title = {The recurrence dimension for piecewise monotonic maps of the interval}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {439--449}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 4}, number = {3}, year = {2005}, mrnumber = {2185864}, zbl = {1170.37316}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ASNSP_2005_5_4_3_439_0/} }
TY - JOUR AU - Hofbauer, Franz TI - The recurrence dimension for piecewise monotonic maps of the interval JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2005 SP - 439 EP - 449 VL - 4 IS - 3 PB - Scuola Normale Superiore, Pisa UR - http://geodesic.mathdoc.fr/item/ASNSP_2005_5_4_3_439_0/ LA - en ID - ASNSP_2005_5_4_3_439_0 ER -
%0 Journal Article %A Hofbauer, Franz %T The recurrence dimension for piecewise monotonic maps of the interval %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2005 %P 439-449 %V 4 %N 3 %I Scuola Normale Superiore, Pisa %U http://geodesic.mathdoc.fr/item/ASNSP_2005_5_4_3_439_0/ %G en %F ASNSP_2005_5_4_3_439_0
Hofbauer, Franz. The recurrence dimension for piecewise monotonic maps of the interval. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 4 (2005) no. 3, pp. 439-449. http://geodesic.mathdoc.fr/item/ASNSP_2005_5_4_3_439_0/