Voir la notice de l'article provenant de la source Numdam
This paper is concerned with strong solutions of uniformly elliptic equations of non-divergence type in the plane. First, we use the notion of quasiregular gradient mappings to improve Morrey's theorem on the Hölder continuity of gradients of solutions. Then we show that the Gilbarg-Serrin equation does not produce the optimal Hölder exponent in the considered class of equations. Finally, we propose a conjecture for the best possible exponent and prove it under an additional restriction.
Baernstein II, Albert 1 ; Kovalev, Leonid V. 1
@article{ASNSP_2005_5_4_2_295_0, author = {Baernstein II, Albert and Kovalev, Leonid V.}, title = {On {H\"older} regularity for elliptic equations of non-divergence type in the plane}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {295--317}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 4}, number = {2}, year = {2005}, mrnumber = {2163558}, zbl = {1150.35021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ASNSP_2005_5_4_2_295_0/} }
TY - JOUR AU - Baernstein II, Albert AU - Kovalev, Leonid V. TI - On Hölder regularity for elliptic equations of non-divergence type in the plane JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2005 SP - 295 EP - 317 VL - 4 IS - 2 PB - Scuola Normale Superiore, Pisa UR - http://geodesic.mathdoc.fr/item/ASNSP_2005_5_4_2_295_0/ LA - en ID - ASNSP_2005_5_4_2_295_0 ER -
%0 Journal Article %A Baernstein II, Albert %A Kovalev, Leonid V. %T On Hölder regularity for elliptic equations of non-divergence type in the plane %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2005 %P 295-317 %V 4 %N 2 %I Scuola Normale Superiore, Pisa %U http://geodesic.mathdoc.fr/item/ASNSP_2005_5_4_2_295_0/ %G en %F ASNSP_2005_5_4_2_295_0
Baernstein II, Albert; Kovalev, Leonid V. On Hölder regularity for elliptic equations of non-divergence type in the plane. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 4 (2005) no. 2, pp. 295-317. http://geodesic.mathdoc.fr/item/ASNSP_2005_5_4_2_295_0/