Estimates of the derivatives for a class of parabolic degenerate operators with unbounded coefficients in
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 4 (2005) no. 2, pp. 255-293
Voir la notice de l'article provenant de la source Numdam
We consider a class of perturbations of the degenerate Ornstein-Uhlenbeck operator in . Using a revised version of Bernstein’s method we provide several uniform estimates for the semigroup associated with the realization of the operator in the space of all the bounded and continuous functions in
@article{ASNSP_2005_5_4_2_255_0,
author = {Lorenzi, Luca},
title = {Estimates of the derivatives for a class of parabolic degenerate operators with unbounded coefficients in $\mathbb {R}^N$},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
pages = {255--293},
publisher = {Scuola Normale Superiore, Pisa},
volume = {Ser. 5, 4},
number = {2},
year = {2005},
mrnumber = {2163557},
zbl = {1107.35071},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ASNSP_2005_5_4_2_255_0/}
}
TY - JOUR
AU - Lorenzi, Luca
TI - Estimates of the derivatives for a class of parabolic degenerate operators with unbounded coefficients in $\mathbb {R}^N$
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2005
SP - 255
EP - 293
VL - 4
IS - 2
PB - Scuola Normale Superiore, Pisa
UR - http://geodesic.mathdoc.fr/item/ASNSP_2005_5_4_2_255_0/
LA - en
ID - ASNSP_2005_5_4_2_255_0
ER -
%0 Journal Article
%A Lorenzi, Luca
%T Estimates of the derivatives for a class of parabolic degenerate operators with unbounded coefficients in $\mathbb {R}^N$
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 2005
%P 255-293
%V 4
%N 2
%I Scuola Normale Superiore, Pisa
%U http://geodesic.mathdoc.fr/item/ASNSP_2005_5_4_2_255_0/
%G en
%F ASNSP_2005_5_4_2_255_0
Lorenzi, Luca. Estimates of the derivatives for a class of parabolic degenerate operators with unbounded coefficients in $\mathbb {R}^N$. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 4 (2005) no. 2, pp. 255-293. http://geodesic.mathdoc.fr/item/ASNSP_2005_5_4_2_255_0/