Voir la notice de l'article provenant de la source Numdam
Using recent development in Poletsky theory of discs, we prove the following result: Let be two complex manifolds, let be a complex analytic space which possesses the Hartogs extension property, let (resp. ) be a non locally pluripolar subset of (resp. ). We show that every separately holomorphic mapping extends to a holomorphic mapping on such that on where (resp. is the plurisubharmonic measure of (resp. ) relative to (resp. ). Generalizations of this result for an -fold cross are also given.
@article{ASNSP_2005_5_4_2_219_0, author = {Nguy\^en, Vi\^et-Anh}, title = {A general version of the {Hartogs} extension theorem for separately holomorphic mappings between complex analytic spaces}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {219--254}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 4}, number = {2}, year = {2005}, mrnumber = {2163556}, zbl = {1170.32306}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ASNSP_2005_5_4_2_219_0/} }
TY - JOUR AU - Nguyên, Viêt-Anh TI - A general version of the Hartogs extension theorem for separately holomorphic mappings between complex analytic spaces JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2005 SP - 219 EP - 254 VL - 4 IS - 2 PB - Scuola Normale Superiore, Pisa UR - http://geodesic.mathdoc.fr/item/ASNSP_2005_5_4_2_219_0/ LA - en ID - ASNSP_2005_5_4_2_219_0 ER -
%0 Journal Article %A Nguyên, Viêt-Anh %T A general version of the Hartogs extension theorem for separately holomorphic mappings between complex analytic spaces %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2005 %P 219-254 %V 4 %N 2 %I Scuola Normale Superiore, Pisa %U http://geodesic.mathdoc.fr/item/ASNSP_2005_5_4_2_219_0/ %G en %F ASNSP_2005_5_4_2_219_0
Nguyên, Viêt-Anh. A general version of the Hartogs extension theorem for separately holomorphic mappings between complex analytic spaces. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 4 (2005) no. 2, pp. 219-254. http://geodesic.mathdoc.fr/item/ASNSP_2005_5_4_2_219_0/