Sur la transformation d'Abel-Radon des courants localement résiduels
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 4 (2005) no. 1, pp. 27-57

Voir la notice de l'article provenant de la source Numdam

After recalling the definitions of the Abel-Radon transformation of currents and of locally residual currents, we show that the Abel-Radon transform (α) of a locally residual current α remains locally residual. Then a theorem of P. Griffiths, G. Henkin and M. Passare (cf. [7], [9] and [10]) can be formulated as follows  : Let U be a domain of the grassmannian variety G(p,N) of complex p-planes in N , U * := tU H t be the corresponding linearly p-concave domain of N , and α be a locally residual current of bidegree (N,p). Suppose that the meromorphic n-form (α) extends meromorphically to a greater domain U ˜ of G(p,N). If α is of type ω[T], with T an analytic subvariety of pure codimension p in U * , and ω a meromorphic (resp. regular) q-form (q>0) on T, then α extends in a unique way as a locally residual current to the domain U ˜ * := tU ˜ H t . In particular, if (α)=0, then α extends as a ¯-closed residual current on N . We show in this note that this theorem remains valid for an arbitrary residual current of bidegree (N,p), in the particular case where p=1.

Classification : 32C30, 44A12

Fabre, Bruno 1

1 22, rue Emile Dubois 75014 Paris, France
@article{ASNSP_2005_5_4_1_27_0,
     author = {Fabre, Bruno},
     title = {Sur la transformation {d'Abel-Radon} des courants localement r\'esiduels},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     pages = {27--57},
     publisher = {Scuola Normale Superiore, Pisa},
     volume = {5e s{\'e}rie, 4},
     number = {1},
     year = {2005},
     mrnumber = {2165402},
     zbl = {1170.32305},
     language = {fr},
     url = {http://geodesic.mathdoc.fr/item/ASNSP_2005_5_4_1_27_0/}
}
TY  - JOUR
AU  - Fabre, Bruno
TI  - Sur la transformation d'Abel-Radon des courants localement résiduels
JO  - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY  - 2005
SP  - 27
EP  - 57
VL  - 4
IS  - 1
PB  - Scuola Normale Superiore, Pisa
UR  - http://geodesic.mathdoc.fr/item/ASNSP_2005_5_4_1_27_0/
LA  - fr
ID  - ASNSP_2005_5_4_1_27_0
ER  - 
%0 Journal Article
%A Fabre, Bruno
%T Sur la transformation d'Abel-Radon des courants localement résiduels
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 2005
%P 27-57
%V 4
%N 1
%I Scuola Normale Superiore, Pisa
%U http://geodesic.mathdoc.fr/item/ASNSP_2005_5_4_1_27_0/
%G fr
%F ASNSP_2005_5_4_1_27_0
Fabre, Bruno. Sur la transformation d'Abel-Radon des courants localement résiduels. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 4 (2005) no. 1, pp. 27-57. http://geodesic.mathdoc.fr/item/ASNSP_2005_5_4_1_27_0/