On volumes of arithmetic quotients of SO(1,n)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 3 (2004) no. 4, pp. 749-770

Voir la notice de l'article provenant de la source Numdam

We apply G. Prasad’s volume formula for the arithmetic quotients of semi-simple groups and Bruhat-Tits theory to study the covolumes of arithmetic subgroups of SO(1,n). As a result we prove that for any even dimension n there exists a unique compact arithmetic hyperbolic n-orbifold of the smallest volume. We give a formula for the Euler-Poincaré characteristic of the orbifolds and present an explicit description of their fundamental groups as the stabilizers of certain lattices in quadratic spaces. We also study hyperbolic 4-manifolds defined arithmetically and obtain a number theoretical characterization of the smallest compact arithmetic 4-manifold.

Classification : 11F06, 22E40, 20G30, 51M25

Belolipetsky, Mikhail 1

1 Sobolev Institute of Mathematics Koptyuga 4 630090 Novosibirsk, Russia and Max Planck Institute of Mathematics Vivatsgasse 7 53111 Bonn, Germany
@article{ASNSP_2004_5_3_4_749_0,
     author = {Belolipetsky, Mikhail},
     title = {On volumes of arithmetic quotients of $SO (1, n)$},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     pages = {749--770},
     publisher = {Scuola Normale Superiore, Pisa},
     volume = {Ser. 5, 3},
     number = {4},
     year = {2004},
     mrnumber = {2124587},
     zbl = {1170.11307},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ASNSP_2004_5_3_4_749_0/}
}
TY  - JOUR
AU  - Belolipetsky, Mikhail
TI  - On volumes of arithmetic quotients of $SO (1, n)$
JO  - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY  - 2004
SP  - 749
EP  - 770
VL  - 3
IS  - 4
PB  - Scuola Normale Superiore, Pisa
UR  - http://geodesic.mathdoc.fr/item/ASNSP_2004_5_3_4_749_0/
LA  - en
ID  - ASNSP_2004_5_3_4_749_0
ER  - 
%0 Journal Article
%A Belolipetsky, Mikhail
%T On volumes of arithmetic quotients of $SO (1, n)$
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 2004
%P 749-770
%V 3
%N 4
%I Scuola Normale Superiore, Pisa
%U http://geodesic.mathdoc.fr/item/ASNSP_2004_5_3_4_749_0/
%G en
%F ASNSP_2004_5_3_4_749_0
Belolipetsky, Mikhail. On volumes of arithmetic quotients of $SO (1, n)$. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 3 (2004) no. 4, pp. 749-770. http://geodesic.mathdoc.fr/item/ASNSP_2004_5_3_4_749_0/