Voir la notice de l'article provenant de la source Numdam
We apply G. Prasad’s volume formula for the arithmetic quotients of semi-simple groups and Bruhat-Tits theory to study the covolumes of arithmetic subgroups of . As a result we prove that for any even dimension there exists a unique compact arithmetic hyperbolic -orbifold of the smallest volume. We give a formula for the Euler-Poincaré characteristic of the orbifolds and present an explicit description of their fundamental groups as the stabilizers of certain lattices in quadratic spaces. We also study hyperbolic -manifolds defined arithmetically and obtain a number theoretical characterization of the smallest compact arithmetic -manifold.
Belolipetsky, Mikhail 1
@article{ASNSP_2004_5_3_4_749_0, author = {Belolipetsky, Mikhail}, title = {On volumes of arithmetic quotients of $SO (1, n)$}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {749--770}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 3}, number = {4}, year = {2004}, mrnumber = {2124587}, zbl = {1170.11307}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ASNSP_2004_5_3_4_749_0/} }
TY - JOUR AU - Belolipetsky, Mikhail TI - On volumes of arithmetic quotients of $SO (1, n)$ JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2004 SP - 749 EP - 770 VL - 3 IS - 4 PB - Scuola Normale Superiore, Pisa UR - http://geodesic.mathdoc.fr/item/ASNSP_2004_5_3_4_749_0/ LA - en ID - ASNSP_2004_5_3_4_749_0 ER -
%0 Journal Article %A Belolipetsky, Mikhail %T On volumes of arithmetic quotients of $SO (1, n)$ %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2004 %P 749-770 %V 3 %N 4 %I Scuola Normale Superiore, Pisa %U http://geodesic.mathdoc.fr/item/ASNSP_2004_5_3_4_749_0/ %G en %F ASNSP_2004_5_3_4_749_0
Belolipetsky, Mikhail. On volumes of arithmetic quotients of $SO (1, n)$. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 3 (2004) no. 4, pp. 749-770. http://geodesic.mathdoc.fr/item/ASNSP_2004_5_3_4_749_0/