Voir la notice de l'article provenant de la source Numdam
For large classes of complex Banach spaces (mainly operator spaces) we consider orbits of finite rank elements under the group of linear isometries. These are (in general) real-analytic submanifolds of infinite dimension but of finite CR-codimension. We compute the polynomial convex hull of such orbits explicitly and show as main result that every continuous CR-function on has a unique extension to the polynomial convex hull which is holomorphic in a certain sense. This generalizes to infinite dimensions results from a recent joint paper with D. Zaitsev in Inventiones math. 153, 45-104.
Kaup, Wilhelm 1
@article{ASNSP_2004_5_3_3_535_0, author = {Kaup, Wilhelm}, title = {On the {CR-structure} of certain linear group orbits in infinite dimensions}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {535--554}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 3}, number = {3}, year = {2004}, mrnumber = {2099248}, zbl = {1170.32314}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ASNSP_2004_5_3_3_535_0/} }
TY - JOUR AU - Kaup, Wilhelm TI - On the CR-structure of certain linear group orbits in infinite dimensions JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2004 SP - 535 EP - 554 VL - 3 IS - 3 PB - Scuola Normale Superiore, Pisa UR - http://geodesic.mathdoc.fr/item/ASNSP_2004_5_3_3_535_0/ LA - en ID - ASNSP_2004_5_3_3_535_0 ER -
%0 Journal Article %A Kaup, Wilhelm %T On the CR-structure of certain linear group orbits in infinite dimensions %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2004 %P 535-554 %V 3 %N 3 %I Scuola Normale Superiore, Pisa %U http://geodesic.mathdoc.fr/item/ASNSP_2004_5_3_3_535_0/ %G en %F ASNSP_2004_5_3_3_535_0
Kaup, Wilhelm. On the CR-structure of certain linear group orbits in infinite dimensions. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 3 (2004) no. 3, pp. 535-554. http://geodesic.mathdoc.fr/item/ASNSP_2004_5_3_3_535_0/