Voir la notice de l'article provenant de la source Numdam
For large classes of complex Banach spaces (mainly operator spaces) we consider orbits of finite rank elements under the group of linear isometries. These are (in general) real-analytic submanifolds of infinite dimension but of finite CR-codimension. We compute the polynomial convex hull of such orbits explicitly and show as main result that every continuous CR-function on has a unique extension to the polynomial convex hull which is holomorphic in a certain sense. This generalizes to infinite dimensions results from a recent joint paper with D. Zaitsev in Inventiones math. 153, 45-104.
Kaup, Wilhelm 1
@article{ASNSP_2004_5_3_3_535_0, author = {Kaup, Wilhelm}, title = {On the {CR-structure} of certain linear group orbits in infinite dimensions}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {535--554}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 3}, number = {3}, year = {2004}, mrnumber = {2099248}, zbl = {1170.32314}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ASNSP_2004_5_3_3_535_0/} }
TY - JOUR AU - Kaup, Wilhelm TI - On the CR-structure of certain linear group orbits in infinite dimensions JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2004 SP - 535 EP - 554 VL - 3 IS - 3 PB - Scuola Normale Superiore, Pisa UR - http://geodesic.mathdoc.fr/item/ASNSP_2004_5_3_3_535_0/ LA - en ID - ASNSP_2004_5_3_3_535_0 ER -
%0 Journal Article %A Kaup, Wilhelm %T On the CR-structure of certain linear group orbits in infinite dimensions %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2004 %P 535-554 %V 3 %N 3 %I Scuola Normale Superiore, Pisa %U http://geodesic.mathdoc.fr/item/ASNSP_2004_5_3_3_535_0/ %G en %F ASNSP_2004_5_3_3_535_0
Kaup, Wilhelm. On the CR-structure of certain linear group orbits in infinite dimensions. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 3 (2004) no. 3, pp. 535-554. http://geodesic.mathdoc.fr/item/ASNSP_2004_5_3_3_535_0/
[1] “Real Submanifolds in Complex Spaces and Their Mappings”, Princeton Math. Series 47, Princeton Univ. Press, 1998. | Zbl | MR
- - ,[2] A property of the functions and distributions annihilated by a locally integrable system of complex vector fields, Ann. of Math. (2) 113 (1981), 387-421. | Zbl | MR
- ,[3] “CR Manifolds and the Tangential Cauchy-Riemann Complex”, Studies in Advanced Mathematics, CRC Press. Boca Raton, Ann Arbor, Boston, London 1991. | Zbl | MR
,[4] “Integration”, Hermann, Paris 1965.
,[5] “Complex Analysis on Infinite Dimensional Spaces”, Berlin-Heidelberg-New York, Springer, 1999. | Zbl | MR
,[6] Enveloppes polynômiales d'ensembles compacts invariants, Math. Nachr. 266 (2004), 20-26. | Zbl | MR
- ,[7] “Holomorphic Maps and Invariant Distances”, North Holland, Amsterdam, 1980. | Zbl | MR
- ,[8] Linear algebraic groups in infinite dimensions, Illinois J. Math. 21 (1977), 666-674. | Zbl | MR
- ,[9] Algebraic Characterization of Symmetric Complex Banach Manifolds, Math. Ann. 228 (1977), 39-64. | Zbl | MR
,[10] A Riemann Mapping Theorem for Bounded Symmetric Domains in Complex Banach Spaces, Math. Z. 183 (1983), 503-529. | Zbl | MR
,[11] On spectral and singular values in JB-triples, Proc. Roy. Irish. Acad. 96A (1996), 95-103. | Zbl | MR
,[12] Bounded symmetric domains and polynomial convexity, Manuscripta Math. 114 (2004), 391-398. | Zbl | MR
,[13] On the CR-structure of compact group orbits associated with bounded symmetric domains, Invent. Math. 153 (2003), 45-104. | Zbl | MR
- ,[14] “Jordan pairs”, Springer Lecture Notes 460, 1975. | Zbl | MR
,[15] Enveloppes polynomiales de compacts, Bull. Sci. Math. 116 (1992), 129-144. | Zbl | MR
,[16] “Randstrukturen beschränkter symmetrischer Gebiete”, Dissertation, Tübingen, 1995.
,