Voir la notice de l'article provenant de la source Numdam
In the euclidean setting the celebrated Aleksandrov-Busemann-Feller theorem states that convex functions are a.e. twice differentiable. In this paper we prove that a similar result holds in the Heisenberg group, by showing that every continuous -convex function belongs to the class of functions whose second order horizontal distributional derivatives are Radon measures. Together with a recent result by Ambrosio and Magnani, this proves the existence a.e. of second order horizontal derivatives for the class of continuous -convex functions in the Heisenberg group.
Gutiérrez, Cristian E. 1 ; Montanari, Annamaria 2
@article{ASNSP_2004_5_3_2_349_0, author = {Guti\'errez, Cristian E. and Montanari, Annamaria}, title = {On the second order derivatives of convex functions on the {Heisenberg} group}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {349--366}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 3}, number = {2}, year = {2004}, mrnumber = {2075987}, zbl = {1170.35352}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ASNSP_2004_5_3_2_349_0/} }
TY - JOUR AU - Gutiérrez, Cristian E. AU - Montanari, Annamaria TI - On the second order derivatives of convex functions on the Heisenberg group JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2004 SP - 349 EP - 366 VL - 3 IS - 2 PB - Scuola Normale Superiore, Pisa UR - http://geodesic.mathdoc.fr/item/ASNSP_2004_5_3_2_349_0/ LA - en ID - ASNSP_2004_5_3_2_349_0 ER -
%0 Journal Article %A Gutiérrez, Cristian E. %A Montanari, Annamaria %T On the second order derivatives of convex functions on the Heisenberg group %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2004 %P 349-366 %V 3 %N 2 %I Scuola Normale Superiore, Pisa %U http://geodesic.mathdoc.fr/item/ASNSP_2004_5_3_2_349_0/ %G en %F ASNSP_2004_5_3_2_349_0
Gutiérrez, Cristian E.; Montanari, Annamaria. On the second order derivatives of convex functions on the Heisenberg group. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 3 (2004) no. 2, pp. 349-366. http://geodesic.mathdoc.fr/item/ASNSP_2004_5_3_2_349_0/