Voir la notice de l'article provenant de la source Numdam
Let be the open upper light cone in with respect to the Lorentz product. The connected linear Lorentz group acts on and therefore diagonally on the -fold product where We prove that the extended future tube is a domain of holomorphy.
Heinzner, Peter 1 ; Schützdeller, Patrick 2
@article{ASNSP_2004_5_3_1_39_0, author = {Heinzner, Peter and Sch\"utzdeller, Patrick}, title = {The extended future tube conjecture for {SO(1,} ${\it {n}}$)}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {39--52}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 3}, number = {1}, year = {2004}, mrnumber = {2064966}, zbl = {1170.32300}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ASNSP_2004_5_3_1_39_0/} }
TY - JOUR AU - Heinzner, Peter AU - Schützdeller, Patrick TI - The extended future tube conjecture for SO(1, ${\it {n}}$) JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2004 SP - 39 EP - 52 VL - 3 IS - 1 PB - Scuola Normale Superiore, Pisa UR - http://geodesic.mathdoc.fr/item/ASNSP_2004_5_3_1_39_0/ LA - en ID - ASNSP_2004_5_3_1_39_0 ER -
%0 Journal Article %A Heinzner, Peter %A Schützdeller, Patrick %T The extended future tube conjecture for SO(1, ${\it {n}}$) %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2004 %P 39-52 %V 3 %N 1 %I Scuola Normale Superiore, Pisa %U http://geodesic.mathdoc.fr/item/ASNSP_2004_5_3_1_39_0/ %G en %F ASNSP_2004_5_3_1_39_0
Heinzner, Peter; Schützdeller, Patrick. The extended future tube conjecture for SO(1, ${\it {n}}$). Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 3 (2004) no. 1, pp. 39-52. http://geodesic.mathdoc.fr/item/ASNSP_2004_5_3_1_39_0/
[B] Invariant analytic domains in complex semisimple groups, Transform. Groups 1 (1996), 279-305. | Zbl | MR
,[FK] “Analysis on Symmetric Cones”, Oxford Press, Oxford, 1994. | Zbl | MR
- ,[HW] A theorem on invariant analytic functions with applications to relativistic quantum field theory, Kgl. Danske Videnskap. Selkap, Mat.-Fys. Medd. 31 (1965) 1-14. | Zbl
- ,[He1] Geometric invariant theory on Stein spaces, Math. Ann. 289 (1991), 631-662. | Zbl | MR
,[He2] The minimum principle from a Hamiltonian point of view, Doc. Math. J. 3 (1998), 1-14. | Zbl | MR
,[HeHuL] Kählerian extensions of the symplectic reduction, J. reine angew. Math. 455 (1994), 123-140. | Zbl | MR
- - ,[HeMP] Semistable quotients, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 26 (1998), 233-248. | Zbl | MR | mathdoc-id
- - ,[J] The general theory of quantized fields, In: “Lectures in applied mathematics”, vol. IV, 1965. | Zbl | MR
,[Kr] Geometrische Methoden in der Invariantentheorie, In: “Aspects of Mathematics”, Vieweg Verlag, 1984. | Zbl | MR
,[N] The Levi Problem for Complex Spaces II, Math. Ann. 146 (1962), 195-216. | Zbl | MR
,[SV] Complex analysis in the future tube, In: “Encyclopaedia of mathematical sciences” (Several complex variables II) vol. 8 (1994), 179-253. | Zbl
- ,[StW] “PCT spin statistics, and all that”, W. A. Benjamin, INC., 1964. | Zbl | MR
- ,[W] Quantum field theory and analytic functions of several complex variables, J. Indian Math. Soc. 24 (1960), 625-677. | Zbl | MR
,[Z] A proof of the extended future tube conjecture, Izv. Math. 62 (1998), 201-213. | Zbl | MR
,