Boundedness of global solutions for nonlinear parabolic equations involving gradient blow-up phenomena
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 3 (2004) no. 1, pp. 1-15

Voir la notice de l'article provenant de la source Numdam

We consider a one-dimensional semilinear parabolic equation with a gradient nonlinearity. We provide a complete classification of large time behavior of the classical solutions u: either the space derivative u x blows up in finite time (with u itself remaining bounded), or u is global and converges in C 1 norm to the unique steady state. The main difficulty is to prove C 1 boundedness of all global solutions. To do so, we explicitly compute a nontrivial Lyapunov functional by carrying out the method of Zelenyak. After deriving precise estimates on the solutions and on the Lyapunov functional, we proceed by contradiction by showing that any C 1 unbounded global solution should converge to a singular stationary solution, which does not exist. As a consequence of our results, we exhibit the following interesting situation: - the trajectories starting from some bounded set of initial data in C 1 describe an unbounded set, although each of them is individually bounded and converges to the same limit; - the existence time T * is not a continuous function of the initial data.

Classification : 35K60, 35K65, 35B45

Arrieta, José M. 1 ; Rodriguez-Bernal, Anibal 1 ; Souplet, Philippe 2

1 Departamento de Matemática Aplicada Universidad Complutense 28040 Madrid, Spain
2 Département de Mathématiques INSSET Université de Picardie 02109 St-Quentin, France and Laboratoire de Mathématiques Appliquées UMR CNRS 7641 Université de Versailles 45 avenue des Etats-Unis 78035 Versailles, France
@article{ASNSP_2004_5_3_1_1_0,
     author = {Arrieta, Jos\'e M. and Rodriguez-Bernal, Anibal and Souplet, Philippe},
     title = {Boundedness of global solutions for nonlinear parabolic equations involving gradient blow-up phenomena},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     pages = {1--15},
     publisher = {Scuola Normale Superiore, Pisa},
     volume = {Ser. 5, 3},
     number = {1},
     year = {2004},
     mrnumber = {2064964},
     zbl = {1072.35098},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ASNSP_2004_5_3_1_1_0/}
}
TY  - JOUR
AU  - Arrieta, José M.
AU  - Rodriguez-Bernal, Anibal
AU  - Souplet, Philippe
TI  - Boundedness of global solutions for nonlinear parabolic equations involving gradient blow-up phenomena
JO  - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY  - 2004
SP  - 1
EP  - 15
VL  - 3
IS  - 1
PB  - Scuola Normale Superiore, Pisa
UR  - http://geodesic.mathdoc.fr/item/ASNSP_2004_5_3_1_1_0/
LA  - en
ID  - ASNSP_2004_5_3_1_1_0
ER  - 
%0 Journal Article
%A Arrieta, José M.
%A Rodriguez-Bernal, Anibal
%A Souplet, Philippe
%T Boundedness of global solutions for nonlinear parabolic equations involving gradient blow-up phenomena
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 2004
%P 1-15
%V 3
%N 1
%I Scuola Normale Superiore, Pisa
%U http://geodesic.mathdoc.fr/item/ASNSP_2004_5_3_1_1_0/
%G en
%F ASNSP_2004_5_3_1_1_0
Arrieta, José M.; Rodriguez-Bernal, Anibal; Souplet, Philippe. Boundedness of global solutions for nonlinear parabolic equations involving gradient blow-up phenomena. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 3 (2004) no. 1, pp. 1-15. http://geodesic.mathdoc.fr/item/ASNSP_2004_5_3_1_1_0/