Riemann maps in almost complex manifolds
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 2 (2003) no. 4, pp. 761-785.

Voir la notice de l'article provenant de la source Numdam

We prove the existence of stationary discs in the ball for small almost complex deformations of the standard structure. We define a local analogue of the Riemann map and establish its main properties. These constructions are applied to study the local geometry of almost complex manifolds and their morphisms.

Classification : 32H02, 32H40, 32T15, 53C15, 53D12
@article{ASNSP_2003_5_2_4_761_0,
     author = {Coupet, Bernard and Gaussier, Herv\'e and Sukhov, Alexandre},
     title = {Riemann maps in almost complex manifolds},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     pages = {761--785},
     publisher = {Scuola normale superiore},
     volume = {Ser. 5, 2},
     number = {4},
     year = {2003},
     mrnumber = {2040642},
     zbl = {1170.32310},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ASNSP_2003_5_2_4_761_0/}
}
TY  - JOUR
AU  - Coupet, Bernard
AU  - Gaussier, Hervé
AU  - Sukhov, Alexandre
TI  - Riemann maps in almost complex manifolds
JO  - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY  - 2003
SP  - 761
EP  - 785
VL  - 2
IS  - 4
PB  - Scuola normale superiore
UR  - http://geodesic.mathdoc.fr/item/ASNSP_2003_5_2_4_761_0/
LA  - en
ID  - ASNSP_2003_5_2_4_761_0
ER  - 
%0 Journal Article
%A Coupet, Bernard
%A Gaussier, Hervé
%A Sukhov, Alexandre
%T Riemann maps in almost complex manifolds
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 2003
%P 761-785
%V 2
%N 4
%I Scuola normale superiore
%U http://geodesic.mathdoc.fr/item/ASNSP_2003_5_2_4_761_0/
%G en
%F ASNSP_2003_5_2_4_761_0
Coupet, Bernard; Gaussier, Hervé; Sukhov, Alexandre. Riemann maps in almost complex manifolds. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 2 (2003) no. 4, pp. 761-785. http://geodesic.mathdoc.fr/item/ASNSP_2003_5_2_4_761_0/

[1] Z. Balogh - Ch. Leuenberger, Higher dimensional Riemann maps, Internat. J. Math. 9 (1998), 421-442. | Zbl | MR

[2] D. Bennequin, Topologie symplectique, convexité holomorphe holomorphe et structures de contact [d'après Y. Eliashberg, D. Mc Duff et al.], Astérisque 189-190 (1990), 285-323. | Zbl | MR | mathdoc-id

[3] J. Bland, Contact geometry and CR structures on 𝕊 3 , Acta Math. 172 (1994), 1-49. | Zbl | MR

[4] J. Bland - T. Duchamp, Moduli for pointed convex domains, Invent. Math. 104 (1991), 61-112. | Zbl | MR

[5] J. Bland - T. Duchamp - M. Kalka, A characterization of n by its automorphism group, Lecture Notes in Math. 1268 (1987), 60-65. | Zbl | MR

[6] M. Cerne, Stationary discs of fibrations over the circle, Internat. J. Math. 6 (1995), 805-823. | Zbl | MR

[7] E. Chirka, Regularity of boundaries of analytic sets, Math. USSR-Sb. 45 (1983), 291-336. | Zbl | MR

[8] K. Clancey - I. Gohberg, “Factorization of matrix functions and singular integral operators", Birkhauser, Basel, Boston, Stuttgart, 1981. | Zbl | MR

[9] C. Fefferman, The Bergman kernel and biholomorphic mappings of pseudoconvex domains, Invent. math. 26 (1974), 1-65. | Zbl | MR

[10] J. Globevnik, Perturbation by analytic discs along maximal real submanifolds of N , Math. Z. 217 (1994), 287-316. | Zbl | MR

[11] J. Globevnik, Perturbing analytic discs attached to a maximal totally real submanifolds of n , Indag. Math. 7 (1996), 37-46. | Zbl | MR

[12] S. Ishihara - K. Yano, “Tangent and cotangent bundles: differential geometry", Pure and Applied Mathematics, No. 16, Marcel Dekker Inc., New York, 1973. | Zbl | MR

[13] L. Lempert, La métrique de Kobayashi et la représentation des domaines sur la boule, Bull. Soc. Math. France 109 (1981), 427-474. | Zbl | MR | mathdoc-id

[14] L. Lempert, Solving the degenerate complex Monge-Ampère equation with one concentrated singularity, Math. Ann. 263 (1983), 515-532. | Zbl | MR

[15] L. Lempert, A precise result on the boundary regularity of biholomorphic mappings, Math. Z. 193 (1986), 559-579. | Zbl | MR

[16] L. Lempert, Holomorphic invariants, normal forms and moduli space of convex domains, Ann. of Math. 128 (1988), 47-78. | Zbl | MR

[17] L. Lempert, Erratum: A precise result on the boundary regularity of biholomorphic mappings, Math. Z. 206 (1991), 501-504. | Zbl | MR

[18] P. Libermann, Problèmes d'équivalence relatifs à une structure presque complexe sur une variété à quatre dimensions, Acad. Roy. Belgique Bull. Cl. Sci. (5) 36 (1950), 742-755. | Zbl | MR

[19] M. Y. Pang, Smoothness of the Kobayashi metric of non-convex domains, Internat. J. Math. 4 (1993), 953-987. | Zbl | MR

[20] S. Semmes, A generalization of Riemann mappings and geometric structures on a space of domains in n , Mem. Amer. Math. Soc. 98 (1992), vi+98pp. | Zbl | MR

[21] J. C. Sikorav, “Some properties of holomorphic curves in almost complex manifolds”, pp.165-189, In: “Holomorphic curves in symplectic geometry", Michèle Audin, Jacques Lafontaine Editors, Birkhäuser, 1994. | MR

[22] A. Spiro - S. Trapani, Eversive maps of bounded convex domains in n+1 , J. Geom. Anal. 12 (2002), 695-715. | Zbl | MR

[23] A. Tumanov, Extremal discs and the regularity of CR mappings in higher codimension, Amer. J. Math. 123 (2001), 445-473. | Zbl | MR

[24] N. P. Vekua, “Systems of singular integral equations", Nordholf, Groningen, 1967. | Zbl | MR

[25] S. Webster, On the reflection principle in several complex variables, Proc. Amer. Math. Soc. 71 (1978), 26-28. | Zbl | MR