Voir la notice de l'article provenant de la source Numdam
The aim of this paper is to study the existence of various types of peak solutions for an elliptic system of FitzHugh-Nagumo type. We prove that the system has a single peak solution, which concentrates near the boundary of the domain. Under some extra assumptions, we also construct multi-peak solutions with all the peaks near the boundary, and a single peak solution with its peak near an interior point of the domain.
@article{ASNSP_2003_5_2_4_679_0, author = {Dancer, Edward Norman and Yan, Shusen}, title = {Peak solutions for an elliptic system of {FitzHugh-Nagumo} type}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {679--709}, publisher = {Scuola normale superiore}, volume = {Ser. 5, 2}, number = {4}, year = {2003}, mrnumber = {2040640}, zbl = {1115.35039}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ASNSP_2003_5_2_4_679_0/} }
TY - JOUR AU - Dancer, Edward Norman AU - Yan, Shusen TI - Peak solutions for an elliptic system of FitzHugh-Nagumo type JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2003 SP - 679 EP - 709 VL - 2 IS - 4 PB - Scuola normale superiore UR - http://geodesic.mathdoc.fr/item/ASNSP_2003_5_2_4_679_0/ LA - en ID - ASNSP_2003_5_2_4_679_0 ER -
%0 Journal Article %A Dancer, Edward Norman %A Yan, Shusen %T Peak solutions for an elliptic system of FitzHugh-Nagumo type %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2003 %P 679-709 %V 2 %N 4 %I Scuola normale superiore %U http://geodesic.mathdoc.fr/item/ASNSP_2003_5_2_4_679_0/ %G en %F ASNSP_2003_5_2_4_679_0
Dancer, Edward Norman; Yan, Shusen. Peak solutions for an elliptic system of FitzHugh-Nagumo type. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 2 (2003) no. 4, pp. 679-709. http://geodesic.mathdoc.fr/item/ASNSP_2003_5_2_4_679_0/
[1] “Critical points at infinity in some variational problems", Research Notes in Mathematics 182, Longman-Pitman, 1989. | Zbl | MR
,[2] Existence and multiplicity results for a semilinear eigenvalue problem, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 14 (1987), 97-121. | Zbl | MR | mathdoc-id
- ,[3] A note on asymptotic uniqueness for some nonlinearities which change sign, Bull. Austral. Math. Soc. 61 (2000), 305-312. | Zbl | MR
,[4] Interior and boundary peak solutions for a mixed boundary value problem, Indiana Univ. Math. J. 48 (1999), 1177-1212. | Zbl | MR
- ,[5] Singularly perturbed elliptic problem in exterior domains, J. Differential Integral Equations 13 (2000), 747-777. | Zbl | MR
- ,[6] A minimization problem associated with elliptic system of FitzHugh-Nagumo type, Ann. Inst. H. Poincaré, Analyse Non Linéaire, to appear. | Zbl | MR | mathdoc-id
- ,[7] D. G. deFigueiredo - E. Mitidieri, A maximum principle for an elliptic system and applications to semilinear problems, SIAM J. Math. Anal. 17 (1986), 836-849. | Zbl | MR
[8] Impulses and physiological states in theoretical models of nerve membrane, Biophy. J. 1 (1961), 445-466.
,[9] The set of positive solutions of semilinear equations in large ball, Proc. Royal Soc. Edinburgh 104A (1986), 53-72. | Zbl | MR
- ,[10] A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol. 117 (1952), 500-544.
- ,[11] Standing wave solutions for a system derived from the FitzHugh-Nagumo equation for nerve conduction, SIAM J. Math. Anal. 17 (1986), 74-83. | Zbl | MR
- ,[12] Stationary wave solutions of a system of reaction-diffusion equations derived from the FitzHugh-Nagumo equations, SIAM J. Appl. Math. 44 (1984), 96-110. | Zbl | MR
- ,[13] An active pulse transmission line simulating nerve axon, Proc. Inst. Radio. Engineers 50 (1962), 2061-2070.
- - ,[14] On the location and profile of spike-layer solutions to a singularly perturbed semilinear Dirichlet problem, intermediate solution, Duke Math. J. 94 (1998), 597-618. | Zbl | MR
- - ,[15] On the location and profile of spike-layer solutions to singularly perturbed semilinear Dirichlet problem, Comm. Pure Appl. Math. 48 (1995), 731-768. | Zbl | MR
- ,[16] Uniqueness of positive solutions of semilinear equations in , Arch. Rat. Mech. Anal. 81 (1983), 181-197. | Zbl | MR
- ,[17] A boundary layer solution to a semilinear elliptic system of FitzHugh-Nagumo type, C. R. Acad. Sci. Paris Sér. I. Math. 329 (1999), 27-32. | Zbl | MR
- ,[18] A positive solution on to a system of elliptic equations of FitzHugh-Nagumo type, J. Differential Equations 153 (1999), 292-312. | Zbl | MR
- ,[19] Existence and uniqueness of solutions on bounded domains to a FitzHugh-Nagumo type elliptic system, Pacific J. Math. 197 (2001), 183-211. | Zbl | MR
- ,[20] Solutions with internal jump for an autonomous elliptic system of FitzHugh-Nagumo type, Math. Nachr. 251 (2003), 64-87. | Zbl | MR
- ,[21] The role of the Green's function in a non-linear elliptic equation involving the critical Sobolev exponent, J. Funct. Anal. 89 (1990), 1-52. | Zbl | MR
,[22] On the bifurcation curve for an elliptic system of FitzHugh-Nagumo type, Physica D: Nonlinear Phenomena 177 (2003), 1-22. | Zbl | MR
- ,