Families of differential forms on complex spaces
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 2 (2003) no. 1, pp. 119-150

Voir la notice de l'article provenant de la source Numdam

On every reduced complex space X we construct a family of complexes of soft sheaves Λ X ; each of them is a resolution of the constant sheaf X and induces the ordinary De Rham complex of differential forms on a dense open analytic subset of X. The construction is functorial (in a suitable sense). Moreover each of the above complexes can fully describe the mixed Hodge structure of Deligne on a compact algebraic variety.

Classification : 32C15, 32S35
@article{ASNSP_2003_5_2_1_119_0,
     author = {Ancona, Vincenzo and Gaveau, Bernard},
     title = {Families of differential forms on complex spaces},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     pages = {119--150},
     publisher = {Scuola normale superiore},
     volume = {Ser. 5, 2},
     number = {1},
     year = {2003},
     mrnumber = {1990976},
     zbl = {1170.35358},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ASNSP_2003_5_2_1_119_0/}
}
TY  - JOUR
AU  - Ancona, Vincenzo
AU  - Gaveau, Bernard
TI  - Families of differential forms on complex spaces
JO  - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY  - 2003
SP  - 119
EP  - 150
VL  - 2
IS  - 1
PB  - Scuola normale superiore
UR  - http://geodesic.mathdoc.fr/item/ASNSP_2003_5_2_1_119_0/
LA  - en
ID  - ASNSP_2003_5_2_1_119_0
ER  - 
%0 Journal Article
%A Ancona, Vincenzo
%A Gaveau, Bernard
%T Families of differential forms on complex spaces
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 2003
%P 119-150
%V 2
%N 1
%I Scuola normale superiore
%U http://geodesic.mathdoc.fr/item/ASNSP_2003_5_2_1_119_0/
%G en
%F ASNSP_2003_5_2_1_119_0
Ancona, Vincenzo; Gaveau, Bernard. Families of differential forms on complex spaces. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 2 (2003) no. 1, pp. 119-150. http://geodesic.mathdoc.fr/item/ASNSP_2003_5_2_1_119_0/