Voir la notice de l'article provenant de la source Numdam
This paper gives a new proof of the fact that a -dimensional normal current in is integer multiplicity rectifiable if and only if for every projection onto a -dimensional subspace, almost every slice of by is -dimensional integer multiplicity rectifiable, in other words, a sum of Dirac masses with integer weights. This is a special case of the Rectifiable Slices Theorem, which was first proved a few years ago by B. White.
@article{ASNSP_2002_5_1_4_905_0, author = {Jerrard, Robert L.}, title = {A new proof of the rectifiable slices theorem}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {905--924}, publisher = {Scuola normale superiore}, volume = {Ser. 5, 1}, number = {4}, year = {2002}, mrnumber = {1991007}, zbl = {1096.49022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ASNSP_2002_5_1_4_905_0/} }
TY - JOUR AU - Jerrard, Robert L. TI - A new proof of the rectifiable slices theorem JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2002 SP - 905 EP - 924 VL - 1 IS - 4 PB - Scuola normale superiore UR - http://geodesic.mathdoc.fr/item/ASNSP_2002_5_1_4_905_0/ LA - en ID - ASNSP_2002_5_1_4_905_0 ER -
%0 Journal Article %A Jerrard, Robert L. %T A new proof of the rectifiable slices theorem %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2002 %P 905-924 %V 1 %N 4 %I Scuola normale superiore %U http://geodesic.mathdoc.fr/item/ASNSP_2002_5_1_4_905_0/ %G en %F ASNSP_2002_5_1_4_905_0
Jerrard, Robert L. A new proof of the rectifiable slices theorem. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 1 (2002) no. 4, pp. 905-924. http://geodesic.mathdoc.fr/item/ASNSP_2002_5_1_4_905_0/