A new proof of the rectifiable slices theorem
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 1 (2002) no. 4, pp. 905-924
Cet article a éte moissonné depuis la source Numdam
This paper gives a new proof of the fact that a -dimensional normal current in is integer multiplicity rectifiable if and only if for every projection onto a -dimensional subspace, almost every slice of by is -dimensional integer multiplicity rectifiable, in other words, a sum of Dirac masses with integer weights. This is a special case of the Rectifiable Slices Theorem, which was first proved a few years ago by B. White.
@article{ASNSP_2002_5_1_4_905_0,
author = {Jerrard, Robert L.},
title = {A new proof of the rectifiable slices theorem},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
pages = {905--924},
year = {2002},
publisher = {Scuola normale superiore},
volume = {Ser. 5, 1},
number = {4},
mrnumber = {1991007},
zbl = {1096.49022},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ASNSP_2002_5_1_4_905_0/}
}
TY - JOUR AU - Jerrard, Robert L. TI - A new proof of the rectifiable slices theorem JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2002 SP - 905 EP - 924 VL - 1 IS - 4 PB - Scuola normale superiore UR - http://geodesic.mathdoc.fr/item/ASNSP_2002_5_1_4_905_0/ LA - en ID - ASNSP_2002_5_1_4_905_0 ER -
%0 Journal Article %A Jerrard, Robert L. %T A new proof of the rectifiable slices theorem %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2002 %P 905-924 %V 1 %N 4 %I Scuola normale superiore %U http://geodesic.mathdoc.fr/item/ASNSP_2002_5_1_4_905_0/ %G en %F ASNSP_2002_5_1_4_905_0
Jerrard, Robert L. A new proof of the rectifiable slices theorem. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 1 (2002) no. 4, pp. 905-924. http://geodesic.mathdoc.fr/item/ASNSP_2002_5_1_4_905_0/
