Voir la notice de l'article provenant de la source Numdam
We prove that for a parabolic subgroup of the fixed points sets of all elements in are the same. This result, together with a deep study of the structure of subgroups of acting freely and properly discontinuously on , entails a generalization of the so called weak Hurwitz’s theorem: namely that, given a complex manifold covered by and such that the group of deck transformations of the covering is “sufficiently generic”, then is isolated in .
@article{ASNSP_2002_5_1_4_851_0, author = {de Fabritiis, Chiara}, title = {Generic subgroups of {Aut} $\mathbb {B}^n$}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {851--868}, publisher = {Scuola normale superiore}, volume = {Ser. 5, 1}, number = {4}, year = {2002}, mrnumber = {1991005}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ASNSP_2002_5_1_4_851_0/} }
TY - JOUR AU - de Fabritiis, Chiara TI - Generic subgroups of Aut $\mathbb {B}^n$ JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2002 SP - 851 EP - 868 VL - 1 IS - 4 PB - Scuola normale superiore UR - http://geodesic.mathdoc.fr/item/ASNSP_2002_5_1_4_851_0/ LA - en ID - ASNSP_2002_5_1_4_851_0 ER -
%0 Journal Article %A de Fabritiis, Chiara %T Generic subgroups of Aut $\mathbb {B}^n$ %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2002 %P 851-868 %V 1 %N 4 %I Scuola normale superiore %U http://geodesic.mathdoc.fr/item/ASNSP_2002_5_1_4_851_0/ %G en %F ASNSP_2002_5_1_4_851_0
de Fabritiis, Chiara. Generic subgroups of Aut $\mathbb {B}^n$. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 1 (2002) no. 4, pp. 851-868. http://geodesic.mathdoc.fr/item/ASNSP_2002_5_1_4_851_0/