Voir la notice de l'article provenant de la source Numdam
@article{ASNSP_1996_4_23_2_211_0, author = {Bombieri, E. and Van der Poorten, A. J. and Vaaler, J. D.}, title = {Effective measures of irrationality for cubic extensions of number fields}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {211--248}, publisher = {Scuola normale superiore}, volume = {Ser. 4, 23}, number = {2}, year = {1996}, mrnumber = {1433423}, zbl = {0879.11035}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ASNSP_1996_4_23_2_211_0/} }
TY - JOUR AU - Bombieri, E. AU - Van der Poorten, A. J. AU - Vaaler, J. D. TI - Effective measures of irrationality for cubic extensions of number fields JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 1996 SP - 211 EP - 248 VL - 23 IS - 2 PB - Scuola normale superiore UR - http://geodesic.mathdoc.fr/item/ASNSP_1996_4_23_2_211_0/ LA - en ID - ASNSP_1996_4_23_2_211_0 ER -
%0 Journal Article %A Bombieri, E. %A Van der Poorten, A. J. %A Vaaler, J. D. %T Effective measures of irrationality for cubic extensions of number fields %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 1996 %P 211-248 %V 23 %N 2 %I Scuola normale superiore %U http://geodesic.mathdoc.fr/item/ASNSP_1996_4_23_2_211_0/ %G en %F ASNSP_1996_4_23_2_211_0
Bombieri, E.; Van der Poorten, A. J.; Vaaler, J. D. Effective measures of irrationality for cubic extensions of number fields. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Tome 23 (1996) no. 2, pp. 211-248. http://geodesic.mathdoc.fr/item/ASNSP_1996_4_23_2_211_0/
[1] Rational approximation to 3√2 and other algebraic numbers, Quart. J. Math. Oxford 15 (1964), 375-383. | Zbl
,[2] Simultaneous rational approximations to certain algebraic numbers, Proc. Camb. Phil. Soc. 63 (1967), 693-702. | Zbl | MR
,[3] Linear forms in the logarithms of algebraic numbers I, II, III, IV, Mathematika 13 (1966), 204-16; 14 (1967), 102-107, 220-228; 15 (1968), 204-216. | MR
,[4] On effective approximations to cubic irrationals, New Advances in Transcendence Theorey, A. Baker, ed., Cambridge University Press, 1988, 1-24. | Zbl | MR
- ,[5] On the Thue-Siegel-Dyson Theorem, Acta Math. 148 (1982), 255-296. | Zbl | MR
,[6] Effective Diophantine approximation on G m, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 20 (1993), n. 1, 61-89. | Zbl | MR | mathdoc-id
,[7] On effective measures of irrationality for r√a/b and related numbers, J. Reine Angew. Math. 342 (1983), 173-196. | Zbl
- ,[8] On Siegel's Lemma, Invent. Math. 73 (1983), 11-32. | Zbl | MR
- ,[9]
, preprint.[10] On the method of Thue-Siegel, Ann. of Math. (2) 117 (1983), 325-382. | Zbl | MR
,[11] An effective refinement of the exponent in Liouville's theorem, (Russian), Izv. Akad. Nauk 35 (1971), 973-990. Also: Math. USSR Izv. 5 (1971), 985-1002. | Zbl | MR
,[12] Modèles Minimaux des Variétés Abéliennes sur les Corps Locaux et Globaux, IHES Publications Mathématiques, n. 21, Presses Universitaires de France, 1964. | Zbl | MR | mathdoc-id
,[13] The Number of Irreducible Factors of a Polynomial, I, Trans. Amer. Math. Soc. (1993), 809-834. | Zbl | MR
- ,[14] Capacity Theory on Algebraic Curves, Lecture Notes in Mathematics 1378, Springer-Verlag, New York, 1989. | Zbl | MR
,[15] Simultaneous Approximation to Algebraic Numbers by Elements of a Number field, Monatsh. Math. 79 (1975), 55-66. | Zbl | MR
,[16] Über Annäherungswerte algebraischer Zahlen, J. Reine Angew. Math. 136 (1909), 284-305. | JFM
,[17] The Lagrange Spectrum in Projective Space over a Local Field, Ph.D. Dissertation, The University of Texas at Austin, 1994.
,[18] Dyson's lemma for products of two curves of arbitrary genus, Invent. Math. 98 (1989), 107-113. | Zbl | MR
,