Voir la notice de l'article provenant de la source Numdam
@article{ASNSP_1994_4_21_2_267_0, author = {Brandolini, Luca and Colzani, Leonardo}, title = {Is an operator on weak $L^P$ which commutes with translations a convolution ?}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {267--278}, publisher = {Scuola normale superiore}, volume = {Ser. 4, 21}, number = {2}, year = {1994}, mrnumber = {1288367}, zbl = {0815.47036}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ASNSP_1994_4_21_2_267_0/} }
TY - JOUR AU - Brandolini, Luca AU - Colzani, Leonardo TI - Is an operator on weak $L^P$ which commutes with translations a convolution ? JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 1994 SP - 267 EP - 278 VL - 21 IS - 2 PB - Scuola normale superiore UR - http://geodesic.mathdoc.fr/item/ASNSP_1994_4_21_2_267_0/ LA - en ID - ASNSP_1994_4_21_2_267_0 ER -
%0 Journal Article %A Brandolini, Luca %A Colzani, Leonardo %T Is an operator on weak $L^P$ which commutes with translations a convolution ? %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 1994 %P 267-278 %V 21 %N 2 %I Scuola normale superiore %U http://geodesic.mathdoc.fr/item/ASNSP_1994_4_21_2_267_0/ %G en %F ASNSP_1994_4_21_2_267_0
Brandolini, Luca; Colzani, Leonardo. Is an operator on weak $L^P$ which commutes with translations a convolution ?. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Tome 21 (1994) no. 2, pp. 267-278. http://geodesic.mathdoc.fr/item/ASNSP_1994_4_21_2_267_0/