Boundary values for Sobolev-spaces with weights. Density of D(Ω)inW p,γ 0 ,,γ r s (Ω)andinH p,γ 0 ,,γ r s (Ω) for s > 0 and r=s-1 p -
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 3, Tome 27 (1973) no. 1, pp. 73-96

Voir la notice de l'article provenant de la source Numdam

@article{ASNSP_1973_3_27_1_73_0,
     author = {Triebel, Hans},
     title = {Boundary values for {Sobolev-spaces} with weights. {Density} of $D (\Omega ) \text{ in } W^s_{p, \gamma _0, \dots , \gamma _r} (\Omega ) \text{ and in } H^s_{p, \gamma _0, \dots , \gamma _r} (\Omega )$ for $s$ > $0$ and $r = \left[s - \frac{1}{p}\right]^-$},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     pages = {73--96},
     publisher = {Scuola normale superiore},
     volume = {Ser. 3, 27},
     number = {1},
     year = {1973},
     zbl = {0258.46033},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ASNSP_1973_3_27_1_73_0/}
}
TY  - JOUR
AU  - Triebel, Hans
TI  - Boundary values for Sobolev-spaces with weights. Density of $D (\Omega ) \text{ in } W^s_{p, \gamma _0, \dots , \gamma _r} (\Omega ) \text{ and in } H^s_{p, \gamma _0, \dots , \gamma _r} (\Omega )$ for $s$ > $0$ and $r = \left[s - \frac{1}{p}\right]^-$
JO  - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY  - 1973
SP  - 73
EP  - 96
VL  - 27
IS  - 1
PB  - Scuola normale superiore
UR  - http://geodesic.mathdoc.fr/item/ASNSP_1973_3_27_1_73_0/
LA  - en
ID  - ASNSP_1973_3_27_1_73_0
ER  - 
%0 Journal Article
%A Triebel, Hans
%T Boundary values for Sobolev-spaces with weights. Density of $D (\Omega ) \text{ in } W^s_{p, \gamma _0, \dots , \gamma _r} (\Omega ) \text{ and in } H^s_{p, \gamma _0, \dots , \gamma _r} (\Omega )$ for $s$ > $0$ and $r = \left[s - \frac{1}{p}\right]^-$
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 1973
%P 73-96
%V 27
%N 1
%I Scuola normale superiore
%U http://geodesic.mathdoc.fr/item/ASNSP_1973_3_27_1_73_0/
%G en
%F ASNSP_1973_3_27_1_73_0
Triebel, Hans. Boundary values for Sobolev-spaces with weights. Density of $D (\Omega ) \text{ in } W^s_{p, \gamma _0, \dots , \gamma _r} (\Omega ) \text{ and in } H^s_{p, \gamma _0, \dots , \gamma _r} (\Omega )$ for $s$ > $0$ and $r = \left[s - \frac{1}{p}\right]^-$. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 3, Tome 27 (1973) no. 1, pp. 73-96. http://geodesic.mathdoc.fr/item/ASNSP_1973_3_27_1_73_0/