Introduction to Graded Geometry, Batalin-Vilkovisky Formalism and their Applications
Archivum mathematicum, Tome 47 (2011) no. 5, pp. 415-471 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

These notes are intended to provide a self-contained introduction to the basic ideas of finite dimensional Batalin-Vilkovisky (BV) formalism and its applications. A brief exposition of super- and graded geometries is also given. The BV–formalism is introduced through an odd Fourier transform and the algebraic aspects of integration theory are stressed. As a main application we consider the perturbation theory for certain finite dimensional integrals within BV-formalism. As an illustration we present a proof of the isomorphism between the graph complex and the Chevalley-Eilenberg complex of formal Hamiltonian vectors fields. We briefly discuss how these ideas can be extended to the infinite dimensional setting. These notes should be accessible to both physicists and mathematicians.
These notes are intended to provide a self-contained introduction to the basic ideas of finite dimensional Batalin-Vilkovisky (BV) formalism and its applications. A brief exposition of super- and graded geometries is also given. The BV–formalism is introduced through an odd Fourier transform and the algebraic aspects of integration theory are stressed. As a main application we consider the perturbation theory for certain finite dimensional integrals within BV-formalism. As an illustration we present a proof of the isomorphism between the graph complex and the Chevalley-Eilenberg complex of formal Hamiltonian vectors fields. We briefly discuss how these ideas can be extended to the infinite dimensional setting. These notes should be accessible to both physicists and mathematicians.
Classification : 16E45, 58A50, 97K30
Keywords: Batalin-Vilkovisky formalism; graded symplectic geometry; graph homology; perturbation theory
@article{ARM_2011_47_5_a8,
     author = {Qiu, Jian and Zabzine, Maxim},
     title = {Introduction to {Graded} {Geometry,}  {Batalin-Vilkovisky} {Formalism} and their {Applications}},
     journal = {Archivum mathematicum},
     pages = {415--471},
     year = {2011},
     volume = {47},
     number = {5},
     mrnumber = {2876945},
     zbl = {1265.58003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2011_47_5_a8/}
}
TY  - JOUR
AU  - Qiu, Jian
AU  - Zabzine, Maxim
TI  - Introduction to Graded Geometry,  Batalin-Vilkovisky Formalism and their Applications
JO  - Archivum mathematicum
PY  - 2011
SP  - 415
EP  - 471
VL  - 47
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ARM_2011_47_5_a8/
LA  - en
ID  - ARM_2011_47_5_a8
ER  - 
%0 Journal Article
%A Qiu, Jian
%A Zabzine, Maxim
%T Introduction to Graded Geometry,  Batalin-Vilkovisky Formalism and their Applications
%J Archivum mathematicum
%D 2011
%P 415-471
%V 47
%N 5
%U http://geodesic.mathdoc.fr/item/ARM_2011_47_5_a8/
%G en
%F ARM_2011_47_5_a8
Qiu, Jian; Zabzine, Maxim. Introduction to Graded Geometry,  Batalin-Vilkovisky Formalism and their Applications. Archivum mathematicum, Tome 47 (2011) no. 5, pp. 415-471. http://geodesic.mathdoc.fr/item/ARM_2011_47_5_a8/

[1] Axelrod, S., Singer, I. M.: Chern–Simons perturbation theory II. J. Differential Geom. 39 (1994), 173–213. | MR | Zbl

[2] Bar–Natan, D.: On the Vassiliev Knot Invariants. Topology 34 (1995), 423–472. | DOI | MR

[3] Batalin, I. A., Vilkovisky, G. A.: Gauge algebra and quantization. Phys. Lett. B 102 (1981), 27–31. | DOI | MR

[4] Batalin, I. A., Vilkovisky, G. A.: Quantization of gauge theories with linearly dependent generators. Phys. Rev. D 28 (1983), 2567–2582, [Erratum-ibid. D 30 (1984) 508]. | DOI | MR

[5] Carmeli, C., Caston, L., Fioresi, R.: Mathematical foundation of supersymmetry. EMS Ser. Lect. Math., 2011, with an appendix I. Dimitrov. | MR

[6] Cattaneo, A. S., Felder, G.: A path integral approach to the Kontsevich quantization formula. Comm. Math. Phys. 212 (2000), 591–611, [arXiv:math/9902090]. | DOI | MR | Zbl

[7] Cattaneo, A. S., Fiorenza, D., Longoni, R.: Graded Poisson Algebras. Encyclopedia of Mathematical Physics (Françoise, J.-P., Naber, G. L., Tsou, S. T., eds.), vol. 2, Oxford, Elsevier, 2006, pp. 560–567.

[8] Cattaneo, A. S., Mnëv, P.: Remarks on Chern–Simons invariants. Comm. Math. Phys. 293 (2010), 803–836, [arXiv:0811.2045 [math.QA]]. | DOI | MR | Zbl

[9] Conant, J., Vogtmann, K.: On a theorem of Kontsevich. Algebr. Geom. Topol. 3 (2003), 1167–1224, [arXiv:math/0208169]. | DOI | MR | Zbl

[10] Deligne, P., Morgan, J. W.: Notes on supersymmetry (following Joseph Bernstein). Quantum fields and strings: a course for mathematicians. Amer. Math. Soc., Providence, RI 1, 2 (1999), 41–97, Vol. 1, 2 (Princeton, NJ, 1996/1997). | MR

[11] Getzler, E.: Batalin–Vilkovisky algebras and two–dimensional topological field theories. Comm. Math. Phys. 159 (1994), 265–285. | DOI | MR | Zbl

[12] Hamilton, A.: A super–analogue of Kontsevich’s theorem on graph homology. [arXiv:math/0510390v1]. | Zbl

[13] Hamilton, A., Lazarev, A.: Graph cohomology classes in the Batalin–Vilkovisky formalism. J. Geom. Phys. 59 (2009), 555–575. | DOI | MR | Zbl

[14] Hochschild, G., Serre, J–P.: Cohomology of Lie algebras. Ann. of Math. (2) 57 (3) (1953), 591–603. | DOI | MR | Zbl

[15] Kontsevich, M.: Formal (non)–commutative symplectic geometry. The Gelfand Mathematical Seminars, 1990 – 1992, Birkhäuser, 1993, pp. 173–187. | MR | Zbl

[16] Kontsevich, M.: Feynman diagrams and low–dimensional topology. First European Congress of Mathematics, 1992, Paris, Progress in Mathematics 120, vol. II, Birkhäuser, 1994, pp. 97–121. | MR | Zbl

[17] Polyak, M.: Feynman diagrams for pedestrians and mathematicians. Graphs and patterns in mathematics and theoretical physics, vol. 73, Proc. Sympos. Pure Math., 2005, [arXiv:math/0406251], pp. 15–42. | MR | Zbl

[18] Qiu, J., Zabzine, M.: Knot invariants and new weight systems from general 3D TFTs. arXiv:1006.1240 [hep-th].

[19] Qiu, J., Zabzine, M.: Odd Chern–Simons theory, Lie algebra cohomology and characteristic classes. Comm. Math. Phys. 300 (2010), 789–833, arXiv:0912.1243 [hep-th]. | DOI | MR | Zbl

[20] Roytenberg, D.: On the structure of graded symplectic supermanifolds and Courant algebroids. Quantization, Poisson brackets and beyond (Manchester, 2001), Contemp. Math., 2002, arXiv:math/0203110, pp. 169–185. | MR | Zbl

[21] Sawon, J.: Rozansky–Witten invariants of hyperkähler manifolds. Ph.D. thesis, Oxford, 1999. | MR | Zbl

[22] Sawon, J.: Perturbative expansion of Chern–Simons theory. Geom. Topol. Monogr. 8 (2006), 145–166, arXiv:math/0504495. | DOI | MR | Zbl

[23] Schwarz, A. S.: Geometry of Batalin–Vilkovisky quantization. Comm. Math. Phys. 155 (1993), 249–260, arXiv:hep-th/9205088. | DOI | MR | Zbl

[24] Schwarz, A. S.: Quantum observables, Lie algebra homology and TQFT. Lett. Math. Phys. 49 (2) (1999), 115–122, arXiv:hep-th/9904168. | DOI | MR | Zbl

[25] Varadarajan, V. S.: Supersymmetry for mathematicians: an introduction. Courant Lecture Notes in Mathematics, 11 ed., AMS, New York, 2004. | MR | Zbl