Keywords: Batalin-Vilkovisky formalism; graded symplectic geometry; graph homology; perturbation theory
@article{ARM_2011_47_5_a8,
author = {Qiu, Jian and Zabzine, Maxim},
title = {Introduction to {Graded} {Geometry,} {Batalin-Vilkovisky} {Formalism} and their {Applications}},
journal = {Archivum mathematicum},
pages = {415--471},
year = {2011},
volume = {47},
number = {5},
mrnumber = {2876945},
zbl = {1265.58003},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2011_47_5_a8/}
}
Qiu, Jian; Zabzine, Maxim. Introduction to Graded Geometry, Batalin-Vilkovisky Formalism and their Applications. Archivum mathematicum, Tome 47 (2011) no. 5, pp. 415-471. http://geodesic.mathdoc.fr/item/ARM_2011_47_5_a8/
[1] Axelrod, S., Singer, I. M.: Chern–Simons perturbation theory II. J. Differential Geom. 39 (1994), 173–213. | MR | Zbl
[2] Bar–Natan, D.: On the Vassiliev Knot Invariants. Topology 34 (1995), 423–472. | DOI | MR
[3] Batalin, I. A., Vilkovisky, G. A.: Gauge algebra and quantization. Phys. Lett. B 102 (1981), 27–31. | DOI | MR
[4] Batalin, I. A., Vilkovisky, G. A.: Quantization of gauge theories with linearly dependent generators. Phys. Rev. D 28 (1983), 2567–2582, [Erratum-ibid. D 30 (1984) 508]. | DOI | MR
[5] Carmeli, C., Caston, L., Fioresi, R.: Mathematical foundation of supersymmetry. EMS Ser. Lect. Math., 2011, with an appendix I. Dimitrov. | MR
[6] Cattaneo, A. S., Felder, G.: A path integral approach to the Kontsevich quantization formula. Comm. Math. Phys. 212 (2000), 591–611, [arXiv:math/9902090]. | DOI | MR | Zbl
[7] Cattaneo, A. S., Fiorenza, D., Longoni, R.: Graded Poisson Algebras. Encyclopedia of Mathematical Physics (Françoise, J.-P., Naber, G. L., Tsou, S. T., eds.), vol. 2, Oxford, Elsevier, 2006, pp. 560–567.
[8] Cattaneo, A. S., Mnëv, P.: Remarks on Chern–Simons invariants. Comm. Math. Phys. 293 (2010), 803–836, [arXiv:0811.2045 [math.QA]]. | DOI | MR | Zbl
[9] Conant, J., Vogtmann, K.: On a theorem of Kontsevich. Algebr. Geom. Topol. 3 (2003), 1167–1224, [arXiv:math/0208169]. | DOI | MR | Zbl
[10] Deligne, P., Morgan, J. W.: Notes on supersymmetry (following Joseph Bernstein). Quantum fields and strings: a course for mathematicians. Amer. Math. Soc., Providence, RI 1, 2 (1999), 41–97, Vol. 1, 2 (Princeton, NJ, 1996/1997). | MR
[11] Getzler, E.: Batalin–Vilkovisky algebras and two–dimensional topological field theories. Comm. Math. Phys. 159 (1994), 265–285. | DOI | MR | Zbl
[12] Hamilton, A.: A super–analogue of Kontsevich’s theorem on graph homology. [arXiv:math/0510390v1]. | Zbl
[13] Hamilton, A., Lazarev, A.: Graph cohomology classes in the Batalin–Vilkovisky formalism. J. Geom. Phys. 59 (2009), 555–575. | DOI | MR | Zbl
[14] Hochschild, G., Serre, J–P.: Cohomology of Lie algebras. Ann. of Math. (2) 57 (3) (1953), 591–603. | DOI | MR | Zbl
[15] Kontsevich, M.: Formal (non)–commutative symplectic geometry. The Gelfand Mathematical Seminars, 1990 – 1992, Birkhäuser, 1993, pp. 173–187. | MR | Zbl
[16] Kontsevich, M.: Feynman diagrams and low–dimensional topology. First European Congress of Mathematics, 1992, Paris, Progress in Mathematics 120, vol. II, Birkhäuser, 1994, pp. 97–121. | MR | Zbl
[17] Polyak, M.: Feynman diagrams for pedestrians and mathematicians. Graphs and patterns in mathematics and theoretical physics, vol. 73, Proc. Sympos. Pure Math., 2005, [arXiv:math/0406251], pp. 15–42. | MR | Zbl
[18] Qiu, J., Zabzine, M.: Knot invariants and new weight systems from general 3D TFTs. arXiv:1006.1240 [hep-th].
[19] Qiu, J., Zabzine, M.: Odd Chern–Simons theory, Lie algebra cohomology and characteristic classes. Comm. Math. Phys. 300 (2010), 789–833, arXiv:0912.1243 [hep-th]. | DOI | MR | Zbl
[20] Roytenberg, D.: On the structure of graded symplectic supermanifolds and Courant algebroids. Quantization, Poisson brackets and beyond (Manchester, 2001), Contemp. Math., 2002, arXiv:math/0203110, pp. 169–185. | MR | Zbl
[21] Sawon, J.: Rozansky–Witten invariants of hyperkähler manifolds. Ph.D. thesis, Oxford, 1999. | MR | Zbl
[22] Sawon, J.: Perturbative expansion of Chern–Simons theory. Geom. Topol. Monogr. 8 (2006), 145–166, arXiv:math/0504495. | DOI | MR | Zbl
[23] Schwarz, A. S.: Geometry of Batalin–Vilkovisky quantization. Comm. Math. Phys. 155 (1993), 249–260, arXiv:hep-th/9205088. | DOI | MR | Zbl
[24] Schwarz, A. S.: Quantum observables, Lie algebra homology and TQFT. Lett. Math. Phys. 49 (2) (1999), 115–122, arXiv:hep-th/9904168. | DOI | MR | Zbl
[25] Varadarajan, V. S.: Supersymmetry for mathematicians: an introduction. Courant Lecture Notes in Mathematics, 11 ed., AMS, New York, 2004. | MR | Zbl