Maximal solvable extensions of filiform algebras
Archivum mathematicum, Tome 47 (2011) no. 5, pp. 405-414 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

It is already known that any filiform Lie algebra which possesses a codimension 2 solvable extension is naturally graded. Here we present an alternative derivation of this result.
It is already known that any filiform Lie algebra which possesses a codimension 2 solvable extension is naturally graded. Here we present an alternative derivation of this result.
Classification : 17B05, 17B30, 17B81
Keywords: solvable and nilpotent Lie algebras; filiform algebras
@article{ARM_2011_47_5_a7,
     author = {\v{S}nobl, Libor},
     title = {Maximal solvable extensions of filiform algebras},
     journal = {Archivum mathematicum},
     pages = {405--414},
     year = {2011},
     volume = {47},
     number = {5},
     mrnumber = {2876944},
     zbl = {1265.17017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2011_47_5_a7/}
}
TY  - JOUR
AU  - Šnobl, Libor
TI  - Maximal solvable extensions of filiform algebras
JO  - Archivum mathematicum
PY  - 2011
SP  - 405
EP  - 414
VL  - 47
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ARM_2011_47_5_a7/
LA  - en
ID  - ARM_2011_47_5_a7
ER  - 
%0 Journal Article
%A Šnobl, Libor
%T Maximal solvable extensions of filiform algebras
%J Archivum mathematicum
%D 2011
%P 405-414
%V 47
%N 5
%U http://geodesic.mathdoc.fr/item/ARM_2011_47_5_a7/
%G en
%F ARM_2011_47_5_a7
Šnobl, Libor. Maximal solvable extensions of filiform algebras. Archivum mathematicum, Tome 47 (2011) no. 5, pp. 405-414. http://geodesic.mathdoc.fr/item/ARM_2011_47_5_a7/

[1] Ancochea, J. M., Campoamor–Stursberg, R., Vergnolle, L. Garcia: Solvable Lie algebras with naturally graded nilradicals and their invariants. J. Phys. A, Math. Theor. 39 (2006), 1339–1355. | DOI | MR

[2] Campoamor–Stursberg, R.: Solvable Lie algebras with an $\mathbb{N}$–graded nilradical of maximal nilpotency degree and their invariants. J. Phys. A, Math. Theor. 43 (2010), Article ID 145202. | DOI | MR

[3] Echarte, F. J., Gómez, J. R., Núñez, J.: Les algèbres de Lie filiformes complexes dérivées d’autres algèbres de Lie. [Complex filiform Lie algebras derived from other Lie algebras], Lois d'algèbres et variétés algébraiques (Colmar, 1991), Travaux en Cours 50, Hermann, Paris, 1996, pp. 45–55. | MR

[4] Goze, M., Hakimjanov, Yu.: Sur les algèbres de Lie nilpotentes admettant un tore de derivations. Manuscripta Math. 84 (1994), 115–224. | DOI | MR | Zbl

[5] Goze, M., Khakimdjanov, Yu.: Nilpotent Lie algebras. Kluwer Academic Publishers Group, Dordrecht, 1996. | MR | Zbl

[6] Goze, M., Khakimdjanov, Yu.: Handbook of algebra. vol. 2, ch. Nilpotent and solvable Lie algebras, pp. 615–663, North-Holland, Amsterdam, 2000. | MR

[7] Šnobl, L.: On the structure of maximal solvable extensions and of Levi extensions of nilpotent Lie algebras. J. Phys. A, Math. Theor. 43 (2010), 17, Article ID 505202. | DOI | MR | Zbl

[8] Šnobl, L., Winternitz, P.: A class of solvable Lie algebras and their Casimir invariants. J. Phys. A, Math. Theor. 38 (2005), 2687–2700. | DOI | MR | Zbl

[9] Vergne, M.: Cohomologie des algèbres de Lie nilpotentes. Application à l’étude de la variété des algèbres de Lie nilpotentes. C. R. Math. Acad. Sci. Paris Sèr. A–B 267 (1968), A867–A870. | MR | Zbl