Second variational derivative of local variational problems and conservation laws
Archivum mathematicum, Tome 47 (2011) no. 5, pp. 395-403 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We consider cohomology defined by a system of local Lagrangian and investigate under which conditions the variational Lie derivative of associated local currents is a system of conserved currents. The answer to such a question involves Jacobi equations for the local system. Furthermore, we recall that it was shown by Krupka et al. that the invariance of a closed Helmholtz form of a dynamical form is equivalent with local variationality of the Lie derivative of the dynamical form; we remark that the corresponding local system of Euler–Lagrange forms is variationally equivalent to a global one.
We consider cohomology defined by a system of local Lagrangian and investigate under which conditions the variational Lie derivative of associated local currents is a system of conserved currents. The answer to such a question involves Jacobi equations for the local system. Furthermore, we recall that it was shown by Krupka et al. that the invariance of a closed Helmholtz form of a dynamical form is equivalent with local variationality of the Lie derivative of the dynamical form; we remark that the corresponding local system of Euler–Lagrange forms is variationally equivalent to a global one.
Classification : 55N30, 55R10, 58A12, 58A20, 58E30, 70S10
Keywords: fibered manifold; jet space; Lagrangian formalism; variational sequence; second variational derivative; cohomology; symmetry; conservation law
@article{ARM_2011_47_5_a6,
     author = {Palese, Marcella and Winterroth, Ekkehart and Garrone, E.},
     title = {Second variational derivative of local variational problems and conservation laws},
     journal = {Archivum mathematicum},
     pages = {395--403},
     year = {2011},
     volume = {47},
     number = {5},
     mrnumber = {2876943},
     zbl = {1265.58008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2011_47_5_a6/}
}
TY  - JOUR
AU  - Palese, Marcella
AU  - Winterroth, Ekkehart
AU  - Garrone, E.
TI  - Second variational derivative of local variational problems and conservation laws
JO  - Archivum mathematicum
PY  - 2011
SP  - 395
EP  - 403
VL  - 47
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ARM_2011_47_5_a6/
LA  - en
ID  - ARM_2011_47_5_a6
ER  - 
%0 Journal Article
%A Palese, Marcella
%A Winterroth, Ekkehart
%A Garrone, E.
%T Second variational derivative of local variational problems and conservation laws
%J Archivum mathematicum
%D 2011
%P 395-403
%V 47
%N 5
%U http://geodesic.mathdoc.fr/item/ARM_2011_47_5_a6/
%G en
%F ARM_2011_47_5_a6
Palese, Marcella; Winterroth, Ekkehart; Garrone, E. Second variational derivative of local variational problems and conservation laws. Archivum mathematicum, Tome 47 (2011) no. 5, pp. 395-403. http://geodesic.mathdoc.fr/item/ARM_2011_47_5_a6/

[1] Allemandi, G., Francaviglia, M., Raiteri, M.: Covariant charges in Chern-Simons $AdS3$ gravity. Classical Quantum Gravity 20 (3) (2003), 483–506. | DOI | MR

[2] Anderson, I. M., Duchamp, T.: On the existence of global variational principles. Amer. Math. J. 102 (1980), 781–868. | DOI | MR | Zbl

[3] Borowiec, A., Ferraris, M., Francaviglia, M., Palese, M.: Conservation laws for non-global Lagrangians. Univ. Iagel. Acta Math. 41 (2003), 319–331. | MR | Zbl

[4] Brajerčík, J., Krupka, D.: Variational principles for locally variational forms. J. Math. Phys. 46 (5) (2005), 15, 052903. | DOI | MR | Zbl

[5] Dedecker, P., Tulczyjew, W. M.: Spectral sequences and the inverse problem of the calculus of variations. Lecture Notes in Math., vol. 836, Springer–Verlag, 1980, pp. 498–503. | MR | Zbl

[6] Eck, D. J.: Gauge-natural bundles and generalized gauge theories. Mem. Amer. Math. Soc. 247 (1981), 1–48. | MR | Zbl

[7] Ferraris, M., Francaviglia, M., Raiteri, M.: Conserved Quantities from the Equations of Motion (with applications to natural and gauge natural theories of gravitation). Classical Quantum Gravity 20 (2003), 4043–4066. | DOI | MR

[8] Ferraris, M., Palese, M., Winterroth, E.: Local variational problems and conservation laws. Differential Geom. Appl. 29 (2011), S80–S85. | DOI | MR | Zbl

[9] Francaviglia, M., Palese, M.: Second order variations in variational sequences. Steps in differential geometry. Proceedings of the colloquium on differential geometry (Kozma, L. et al., ed.), Univ. Debrecen, Institute of Mathematics and Informatics, 2001, Debrecen, Hungary, July 25-30, 2000, pp. 119–130. | MR | Zbl

[10] Francaviglia, M., Palese, M., Vitolo, R.: Symmetries in finite order variational sequences. Czechoslovak Math. J. 52 (127) (1) (2002), 197–213. | DOI | MR | Zbl

[11] Francaviglia, M., Palese, M., Vitolo, R.: The Hessian and Jacobi morphisms for higher order calculus of variations. Differential Geom. Appl. 22 (1) (2005), 105–120. | DOI | MR | Zbl

[12] Krupka, D.: Some Geometric Aspects of Variational Problems in Fibred Manifolds. Folia Fac. Sci. Natur. UJEP Brunensis, vol. 14, 1973, pp. 1–65.

[13] Krupka, D.: Variational Sequences on Finite Order Jet Spaces. Proc. Differential Geom. Appl. (Janyška, J., Krupka, D., eds.), World Sci. Singapore, 1990, pp. 236–254. | MR | Zbl

[14] Krupka, D., Krupková, O., Prince, G., Sarlet, W.: Contact symmetries of the Helmholtz form. Differential Geom. Appl. 25 (5) (2007), 518–542. | DOI | MR

[15] Palese, M., Winterroth, E.: Covariant gauge-natural conservation laws. Rep. Math. Phys. 54 (3) (2004), 349–364. | DOI | MR | Zbl

[16] Palese, M., Winterroth, E.: Global generalized Bianchi identities for invariant variational problems on Gauge-natural bundles. Arch. Math. (Brno) 41 (3) (2005), 289–310. | MR | Zbl

[17] Palese, M., Winterroth, E.: Variational Lie derivative and cohomology classes. AIP Conf. Proc. 1360 (2011), 106–112.

[18] Sardanashvily, G.: Noether conservation laws issue from the gauge invariance of an Euler-Lagrange operator, but not a Lagrangian. arXiv:math-ph/0302012; see also Bashkirov, D., Giachetta, G., Mangiarotti, L., Sardanashvily, G.: Noether's second theorem in a general setting. Reducible gauge theories, J. Phys. A38 (2005), 5329–5344.

[19] Takens, F.: A global version of the inverse problem of the calculus of variations. J. Differential Geom. 14 (1979), 543–562. | MR | Zbl

[20] Tulczyjew, W. M.: The Lagrange complex. Bull. Soc. Math. France 105 (1977), 419–431. | MR | Zbl

[21] Vinogradov, A. M.: On the algebro–geometric foundations of Lagrangian field theory. Soviet Math. Dokl. 18 (1977), 1200–1204. | MR | Zbl