Operads for $n$-ary algebras – calculations and conjectures
Archivum mathematicum, Tome 47 (2011) no. 5, pp. 377-387 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In [8] we studied Koszulity of a family ${t\mathcal{A}\it ss}^n_d$ of operads depending on a natural number $n \in \mathbb{N}$ and on the degree $d \in \mathbb{Z}$ of the generating operation. While we proved that, for $n \le 7$, the operad ${t\mathcal{A}\it ss}^n_d$ is Koszul if and only if $d$ is even, and while it follows from [4] that ${t\mathcal{A}\it ss}^n_d$ is Koszul for $d$ even and arbitrary $n$, the (non)Koszulity of ${t\mathcal{A}\it ss}^n_d$ for $d$ odd and $n \ge 8$ remains an open problem. In this note we describe some related numerical experiments, and formulate a conjecture suggested by the results of these computations.
In [8] we studied Koszulity of a family ${t\mathcal{A}\it ss}^n_d$ of operads depending on a natural number $n \in \mathbb{N}$ and on the degree $d \in \mathbb{Z}$ of the generating operation. While we proved that, for $n \le 7$, the operad ${t\mathcal{A}\it ss}^n_d$ is Koszul if and only if $d$ is even, and while it follows from [4] that ${t\mathcal{A}\it ss}^n_d$ is Koszul for $d$ even and arbitrary $n$, the (non)Koszulity of ${t\mathcal{A}\it ss}^n_d$ for $d$ odd and $n \ge 8$ remains an open problem. In this note we describe some related numerical experiments, and formulate a conjecture suggested by the results of these computations.
Classification : 18D50, 55P48
Keywords: operad; Koszulity; minimal model
@article{ARM_2011_47_5_a4,
     author = {Markl, Martin and Remm, Elisabeth},
     title = {Operads for $n$-ary algebras {\textendash} calculations and conjectures},
     journal = {Archivum mathematicum},
     pages = {377--387},
     year = {2011},
     volume = {47},
     number = {5},
     mrnumber = {2876941},
     zbl = {1265.18015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2011_47_5_a4/}
}
TY  - JOUR
AU  - Markl, Martin
AU  - Remm, Elisabeth
TI  - Operads for $n$-ary algebras – calculations and conjectures
JO  - Archivum mathematicum
PY  - 2011
SP  - 377
EP  - 387
VL  - 47
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ARM_2011_47_5_a4/
LA  - en
ID  - ARM_2011_47_5_a4
ER  - 
%0 Journal Article
%A Markl, Martin
%A Remm, Elisabeth
%T Operads for $n$-ary algebras – calculations and conjectures
%J Archivum mathematicum
%D 2011
%P 377-387
%V 47
%N 5
%U http://geodesic.mathdoc.fr/item/ARM_2011_47_5_a4/
%G en
%F ARM_2011_47_5_a4
Markl, Martin; Remm, Elisabeth. Operads for $n$-ary algebras – calculations and conjectures. Archivum mathematicum, Tome 47 (2011) no. 5, pp. 377-387. http://geodesic.mathdoc.fr/item/ARM_2011_47_5_a4/

[1] Getzler, E., Jones, J. D. S.: Operads, homotopy algebra, and iterated integrals for double loop spaces. Preprint hep-th/9403055, March 1994.

[2] Ginzburg, V., Kapranov, M. M.: Koszul duality for operads. Duke Math. J. 76 (1) (1994), 203–272. | DOI | MR | Zbl

[3] Hanlon, P., Wachs, M. L.: On Lie $k$-algebras. Adv. Math. 113 (1995), 206–236. | DOI | MR | Zbl

[4] Hoffbeck, E.: A Poincaré–Birkhoff–Witt criterion for Koszul operads. Manuscripta Math. 131 (1–2) (2010), 87–110. | DOI | MR | Zbl

[5] Markl, M.: A cohomology theory for $A(m)$-algebras and applications. J. Pure Appl. Algebra 83 (1992), 141–175. | DOI | MR | Zbl

[6] Markl, M.: Models for operads. Comm. Algebra 24 (4) (1996), 1471–1500. | DOI | MR | Zbl

[7] Markl, M.: Intrinsic brackets and the ${L_\infty }$-deformation theory of bialgebras. J. Homotopy Relat. Struct. 5 (1) (2010), 177–212. | MR

[8] Markl, M., Remm, E.: (Non–)Koszulness of operads for n-ary algebras, galgalim and other curiosities. Preprint arXiv:0907.1505.

[9] Markl, M., Shnider, S., Stasheff, J. D.: Operads in Algebra, Topology and Physics. Math. Surveys Monogr., vol. 96, Amer. Math. Soc., Providence, RI, 2002. | MR | Zbl