@article{ARM_2011_47_5_a4,
author = {Markl, Martin and Remm, Elisabeth},
title = {Operads for $n$-ary algebras {\textendash} calculations and conjectures},
journal = {Archivum mathematicum},
pages = {377--387},
year = {2011},
volume = {47},
number = {5},
mrnumber = {2876941},
zbl = {1265.18015},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2011_47_5_a4/}
}
Markl, Martin; Remm, Elisabeth. Operads for $n$-ary algebras – calculations and conjectures. Archivum mathematicum, Tome 47 (2011) no. 5, pp. 377-387. http://geodesic.mathdoc.fr/item/ARM_2011_47_5_a4/
[1] Getzler, E., Jones, J. D. S.: Operads, homotopy algebra, and iterated integrals for double loop spaces. Preprint hep-th/9403055, March 1994.
[2] Ginzburg, V., Kapranov, M. M.: Koszul duality for operads. Duke Math. J. 76 (1) (1994), 203–272. | DOI | MR | Zbl
[3] Hanlon, P., Wachs, M. L.: On Lie $k$-algebras. Adv. Math. 113 (1995), 206–236. | DOI | MR | Zbl
[4] Hoffbeck, E.: A Poincaré–Birkhoff–Witt criterion for Koszul operads. Manuscripta Math. 131 (1–2) (2010), 87–110. | DOI | MR | Zbl
[5] Markl, M.: A cohomology theory for $A(m)$-algebras and applications. J. Pure Appl. Algebra 83 (1992), 141–175. | DOI | MR | Zbl
[6] Markl, M.: Models for operads. Comm. Algebra 24 (4) (1996), 1471–1500. | DOI | MR | Zbl
[7] Markl, M.: Intrinsic brackets and the ${L_\infty }$-deformation theory of bialgebras. J. Homotopy Relat. Struct. 5 (1) (2010), 177–212. | MR
[8] Markl, M., Remm, E.: (Non–)Koszulness of operads for n-ary algebras, galgalim and other curiosities. Preprint arXiv:0907.1505.
[9] Markl, M., Shnider, S., Stasheff, J. D.: Operads in Algebra, Topology and Physics. Math. Surveys Monogr., vol. 96, Amer. Math. Soc., Providence, RI, 2002. | MR | Zbl