Infinitesimal CR automorphisms of hypersurfaces of finite type in ${\mathbb{C}}^2$
Archivum mathematicum, Tome 47 (2011) no. 5, pp. 367-375 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We study the Chern-Moser operator for hypersurfaces of finite type in ${\mathbb{C}}^2$. Analysing its kernel, we derive explicit results on jet determination for the stability group, and give a description of infinitesimal CR automorphisms of such manifolds.
We study the Chern-Moser operator for hypersurfaces of finite type in ${\mathbb{C}}^2$. Analysing its kernel, we derive explicit results on jet determination for the stability group, and give a description of infinitesimal CR automorphisms of such manifolds.
Classification : 32V35, 32V40
Keywords: Chern-Moser operator; automorphism group; finite jet determination; finite type
@article{ARM_2011_47_5_a3,
     author = {Kol\'a\v{r}, Martin and Meylan, Francine},
     title = {Infinitesimal {CR} automorphisms of hypersurfaces of finite type in ${\mathbb{C}}^2$},
     journal = {Archivum mathematicum},
     pages = {367--375},
     year = {2011},
     volume = {47},
     number = {5},
     mrnumber = {2876940},
     zbl = {1265.32023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2011_47_5_a3/}
}
TY  - JOUR
AU  - Kolář, Martin
AU  - Meylan, Francine
TI  - Infinitesimal CR automorphisms of hypersurfaces of finite type in ${\mathbb{C}}^2$
JO  - Archivum mathematicum
PY  - 2011
SP  - 367
EP  - 375
VL  - 47
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ARM_2011_47_5_a3/
LA  - en
ID  - ARM_2011_47_5_a3
ER  - 
%0 Journal Article
%A Kolář, Martin
%A Meylan, Francine
%T Infinitesimal CR automorphisms of hypersurfaces of finite type in ${\mathbb{C}}^2$
%J Archivum mathematicum
%D 2011
%P 367-375
%V 47
%N 5
%U http://geodesic.mathdoc.fr/item/ARM_2011_47_5_a3/
%G en
%F ARM_2011_47_5_a3
Kolář, Martin; Meylan, Francine. Infinitesimal CR automorphisms of hypersurfaces of finite type in ${\mathbb{C}}^2$. Archivum mathematicum, Tome 47 (2011) no. 5, pp. 367-375. http://geodesic.mathdoc.fr/item/ARM_2011_47_5_a3/

[1] Baouendi, M. S., Ebenfelt, P., Rothschild, L. P.: Real Submanifolds in Complex Space and Their Mappings. Princeton Math. Ser. (1999). | MR | Zbl

[2] Chern, S. S., Moser, J.: Real hypersurfaces in complex manifolds. Acta Math. 133 (1974), 219–271. | DOI | MR

[3] Ebenfelt, P., Lamel, B., Zaitsev, D.: Finite jet determination of local analytic CR automorphisms and their parametrization by $2-$jets in the finite type case. Geom. Funct. Anal. 13 (2003), 546–573. | DOI | MR | Zbl

[4] Kohn, J. J.: Boundary behaviour of $\bar{\partial }$ on weakly pseudoconvex manifolds of dimension two. J. Differential Geom. 6 (1972), 523–542. | MR

[5] Kolář, M.: Normal forms for hypersurfaces of finite type in $ \mathbb{C}^2$. Math. Res. Lett. 12 (2005), 523–542. | DOI | MR

[6] Kolář, M.: Local equivalence of symmetric hypersurfaces in $\mathbb{C}^2$. Trans. Amer. Math. Soc. 362 (2010), 2833–2843. | DOI | MR

[7] Kolář, M., Meylan, F.: Chern–Moser operators and weighted jet determination problems. Contemporary Mathematics 550 (2011), 75–87. | DOI | MR | Zbl