Keywords: Chern-Moser operator; automorphism group; finite jet determination; finite type
@article{ARM_2011_47_5_a3,
author = {Kol\'a\v{r}, Martin and Meylan, Francine},
title = {Infinitesimal {CR} automorphisms of hypersurfaces of finite type in ${\mathbb{C}}^2$},
journal = {Archivum mathematicum},
pages = {367--375},
year = {2011},
volume = {47},
number = {5},
mrnumber = {2876940},
zbl = {1265.32023},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2011_47_5_a3/}
}
Kolář, Martin; Meylan, Francine. Infinitesimal CR automorphisms of hypersurfaces of finite type in ${\mathbb{C}}^2$. Archivum mathematicum, Tome 47 (2011) no. 5, pp. 367-375. http://geodesic.mathdoc.fr/item/ARM_2011_47_5_a3/
[1] Baouendi, M. S., Ebenfelt, P., Rothschild, L. P.: Real Submanifolds in Complex Space and Their Mappings. Princeton Math. Ser. (1999). | MR | Zbl
[2] Chern, S. S., Moser, J.: Real hypersurfaces in complex manifolds. Acta Math. 133 (1974), 219–271. | DOI | MR
[3] Ebenfelt, P., Lamel, B., Zaitsev, D.: Finite jet determination of local analytic CR automorphisms and their parametrization by $2-$jets in the finite type case. Geom. Funct. Anal. 13 (2003), 546–573. | DOI | MR | Zbl
[4] Kohn, J. J.: Boundary behaviour of $\bar{\partial }$ on weakly pseudoconvex manifolds of dimension two. J. Differential Geom. 6 (1972), 523–542. | MR
[5] Kolář, M.: Normal forms for hypersurfaces of finite type in $ \mathbb{C}^2$. Math. Res. Lett. 12 (2005), 523–542. | DOI | MR
[6] Kolář, M.: Local equivalence of symmetric hypersurfaces in $\mathbb{C}^2$. Trans. Amer. Math. Soc. 362 (2010), 2833–2843. | DOI | MR
[7] Kolář, M., Meylan, F.: Chern–Moser operators and weighted jet determination problems. Contemporary Mathematics 550 (2011), 75–87. | DOI | MR | Zbl