Invariant variational problems on principal bundles and conservation laws
Archivum mathematicum, Tome 47 (2011) no. 5, pp. 357-366 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this work, we consider variational problems defined by $G$-invariant Lagrangians on the $r$-jet prolongation of a principal bundle $P$, where $G$ is the structure group of $P$. These problems can be also considered as defined on the associated bundle of the $r$-th order connections. The correspondence between the Euler-Lagrange equations for these variational problems and conservation laws is discussed.
In this work, we consider variational problems defined by $G$-invariant Lagrangians on the $r$-jet prolongation of a principal bundle $P$, where $G$ is the structure group of $P$. These problems can be also considered as defined on the associated bundle of the $r$-th order connections. The correspondence between the Euler-Lagrange equations for these variational problems and conservation laws is discussed.
Classification : 49Q99, 49S05, 58A10, 58A20
Keywords: principal bundle; variational principle; invariant Lagrangian; Euler-Lagrange equations; Noether’s current; conservation law
@article{ARM_2011_47_5_a2,
     author = {Brajer\v{c}{\'\i}k, J\'an},
     title = {Invariant variational problems on principal bundles and conservation laws},
     journal = {Archivum mathematicum},
     pages = {357--366},
     year = {2011},
     volume = {47},
     number = {5},
     mrnumber = {2876939},
     zbl = {1265.49049},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2011_47_5_a2/}
}
TY  - JOUR
AU  - Brajerčík, Ján
TI  - Invariant variational problems on principal bundles and conservation laws
JO  - Archivum mathematicum
PY  - 2011
SP  - 357
EP  - 366
VL  - 47
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ARM_2011_47_5_a2/
LA  - en
ID  - ARM_2011_47_5_a2
ER  - 
%0 Journal Article
%A Brajerčík, Ján
%T Invariant variational problems on principal bundles and conservation laws
%J Archivum mathematicum
%D 2011
%P 357-366
%V 47
%N 5
%U http://geodesic.mathdoc.fr/item/ARM_2011_47_5_a2/
%G en
%F ARM_2011_47_5_a2
Brajerčík, Ján. Invariant variational problems on principal bundles and conservation laws. Archivum mathematicum, Tome 47 (2011) no. 5, pp. 357-366. http://geodesic.mathdoc.fr/item/ARM_2011_47_5_a2/

[1] Brajerčík, J.: $Gl_{n} (\mathbb{R})$–invariant variational principles on frame bundles. Balkan J. Geom. Appl. 13 (1) (2008), 11–19. | MR

[2] Brajerčík, J.: Order reduction of the Euler–Lagrange equations of higher order invariant variational problems on frame bundles. Czechoslovak Math. J. (2011), to appear. | DOI | MR | Zbl

[3] Brajerčík, J., Krupka, D.: Variational principles for locally variational forms. J. Math. Phys. 46 (2005), 1–15, 052903. | DOI | MR | Zbl

[4] Castrillón López, M., García, P. L., Ratiu, T. S.: Euler–Poincaré reduction on principal bundles. Lett. Math. Phys. 58 (2001), 167–180. | DOI | MR | Zbl

[5] Castrillón López, M., García, P. L., Rodrigo, C.: Euler–Poincaré reduction in principal fibre bundles and the problem of Lagrange. Differential Geom. Appl. 25 (6) (2007), 585–593. | DOI | MR

[6] Castrillón López, M., Ratiu, T. S., Shkoller, S.: Reduction in principal fiber bundles: Covariant Euler–Poincaré equations. Proc. Amer. Math. Soc. 128 (7) (2000), 2155–2164. | DOI | MR

[7] Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry, Vol. 1, 2. Interscience Publishers, Wiley, New York, 1963. | MR

[8] Kolář, I., Michor, P. W., Slovák, J.: Natural Operations in Differential Geometry. Springer Verlag, Berlin, 1993. | MR

[9] Krupka, D.: Some geometric aspects of variational problems in fibered manifold. Folia Fac. Sci. Natur. Univ. Purk. Brun. Phys. 14 (1973).

[10] Krupka, D.: A geometric theory of ordinary first order variational problems in fibered manifolds, II. Invariance. J. Math. Anal. Appl. 49 (1975), 469–476. | DOI | MR | Zbl

[11] Krupka, D.: Lepagean forms in higher order variational theory. Proc. IUTAM-ISIMM Symposium, Modern Developements in Analytical Mechanics I: Geometrical Dynamics (Benenti, S., Francaviglia, M., Lichnerowicz, A., eds.), Accad. delle Scienze di Torino, Torino, 1983, pp. 197–238. | MR | Zbl

[12] Krupka, D., Janyška, J.: Lectures on Differential Invariants. Folia Fac. Sci. Natur. Univ. Purk. Brun. Math. 1 (1990). | MR

[13] Trautman, A.: Invariance of Lagrangian systems, General RelativityPapers in honour of J. L. Synge. pp. 85–99, Clarendon Press, Oxford, 1972. | MR