Keywords: principal bundle; variational principle; invariant Lagrangian; Euler-Lagrange equations; Noether’s current; conservation law
@article{ARM_2011_47_5_a2,
author = {Brajer\v{c}{\'\i}k, J\'an},
title = {Invariant variational problems on principal bundles and conservation laws},
journal = {Archivum mathematicum},
pages = {357--366},
year = {2011},
volume = {47},
number = {5},
mrnumber = {2876939},
zbl = {1265.49049},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2011_47_5_a2/}
}
Brajerčík, Ján. Invariant variational problems on principal bundles and conservation laws. Archivum mathematicum, Tome 47 (2011) no. 5, pp. 357-366. http://geodesic.mathdoc.fr/item/ARM_2011_47_5_a2/
[1] Brajerčík, J.: $Gl_{n} (\mathbb{R})$–invariant variational principles on frame bundles. Balkan J. Geom. Appl. 13 (1) (2008), 11–19. | MR
[2] Brajerčík, J.: Order reduction of the Euler–Lagrange equations of higher order invariant variational problems on frame bundles. Czechoslovak Math. J. (2011), to appear. | DOI | MR | Zbl
[3] Brajerčík, J., Krupka, D.: Variational principles for locally variational forms. J. Math. Phys. 46 (2005), 1–15, 052903. | DOI | MR | Zbl
[4] Castrillón López, M., García, P. L., Ratiu, T. S.: Euler–Poincaré reduction on principal bundles. Lett. Math. Phys. 58 (2001), 167–180. | DOI | MR | Zbl
[5] Castrillón López, M., García, P. L., Rodrigo, C.: Euler–Poincaré reduction in principal fibre bundles and the problem of Lagrange. Differential Geom. Appl. 25 (6) (2007), 585–593. | DOI | MR
[6] Castrillón López, M., Ratiu, T. S., Shkoller, S.: Reduction in principal fiber bundles: Covariant Euler–Poincaré equations. Proc. Amer. Math. Soc. 128 (7) (2000), 2155–2164. | DOI | MR
[7] Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry, Vol. 1, 2. Interscience Publishers, Wiley, New York, 1963. | MR
[8] Kolář, I., Michor, P. W., Slovák, J.: Natural Operations in Differential Geometry. Springer Verlag, Berlin, 1993. | MR
[9] Krupka, D.: Some geometric aspects of variational problems in fibered manifold. Folia Fac. Sci. Natur. Univ. Purk. Brun. Phys. 14 (1973).
[10] Krupka, D.: A geometric theory of ordinary first order variational problems in fibered manifolds, II. Invariance. J. Math. Anal. Appl. 49 (1975), 469–476. | DOI | MR | Zbl
[11] Krupka, D.: Lepagean forms in higher order variational theory. Proc. IUTAM-ISIMM Symposium, Modern Developements in Analytical Mechanics I: Geometrical Dynamics (Benenti, S., Francaviglia, M., Lichnerowicz, A., eds.), Accad. delle Scienze di Torino, Torino, 1983, pp. 197–238. | MR | Zbl
[12] Krupka, D., Janyška, J.: Lectures on Differential Invariants. Folia Fac. Sci. Natur. Univ. Purk. Brun. Math. 1 (1990). | MR
[13] Trautman, A.: Invariance of Lagrangian systems, General RelativityPapers in honour of J. L. Synge. pp. 85–99, Clarendon Press, Oxford, 1972. | MR