@article{ARM_2011_47_5_a1,
author = {Bering, Klaus},
title = {Noether{\textquoteright}s theorem for a fixed region},
journal = {Archivum mathematicum},
pages = {337--356},
year = {2011},
volume = {47},
number = {5},
mrnumber = {2876938},
zbl = {1265.70033},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2011_47_5_a1/}
}
Bering, Klaus. Noether’s theorem for a fixed region. Archivum mathematicum, Tome 47 (2011) no. 5, pp. 337-356. http://geodesic.mathdoc.fr/item/ARM_2011_47_5_a1/
[1] Arnold, V. I.: Mathematical Methods of Classical Mechanics. Springer–Verlag, 1989. | MR
[2] Barnich, G., Brandt, F., Henneaux, M.: Local BRST cohomology in gauge theories. Phys. Rep. 338 (2000), 439–569, arXiv:hep-th/0002245. | DOI | MR | Zbl
[3] Bering, K.: Putting an edge to the Poisson bracket. J. Math. Phys. 41 (2000), 7468–7500. | DOI | MR | Zbl
[4] Bogoliubov, N. N., Shirkov, D. V.: Introduction to the Theory of Quantized Fields. 3rd ed., John Wiley and Sons Inc., 1980. | MR
[5] de Wit, B., Smith, J.: Field Theory in Particle Physics. vol. 1, North–Holland, 1986.
[6] Goldstein, H.: Classical Mechanics. Addison–Wesley Publishing, 1980, Second edition. | MR | Zbl
[7] Hill, E. L.: Hamilton’s principle and the conservation theorems of mathematical physics. Rev. Modern Phys. 23 (1951), 253–260. | DOI | MR | Zbl
[8] Ibragimov, N. Kh.: Invariant variational problems and the conservation laws (remarks on E. Noether’s theorem). Theoret. Mat.h Phys. 1 (1969), 267–274. | DOI | MR
[9] José, J. V., Saletan, E. J.: Classical Dynamics: A Contemporary Approach. Cambridge Univ. Press, 1998. | MR
[10] Komorowski, J.: A modern version of the E. Noether’s theorems in the calculus of variations, Part I. Studia Math. 29 (1968), 261–273. | MR
[11] Noether, E.: Invariante Variationsprobleme. Nachr. d. König. Gesellsch. d. Wiss. zu Göttingen, Math.–Phys. Klasse (1918), 235—257, English translation: arXiv:physics/0503066.
[12] Olver, P. J.: Applications of Lie Groups to Differential Equations. 2nd ed., Springer–Verlag, 1993. | MR | Zbl
[13] Polchinski, J.: String Theory. vol. 1, Cambridge Univ. Press, 1998. | Zbl
[14] Ramond, P.: Field Theory: A Modern Primer. Addison–Wesley, 1989. | MR
[15] Sarlet, W., Cantrijn, F.: Generalizations of Noether’s theorem in classical mechanics. SIAM Rev. 23 (1981), 467–494. | MR | Zbl
[16] Trautman, A.: Noether equations and conservation laws. Commun. Math. Phys. 6 (1967), 248–261. | MR | Zbl
[17] http://en.wikipedia.org/wiki/Noether's_theorem</b> tp://en.wikipedia.org/wiki/noether's_theorem.