Noether’s theorem for a fixed region
Archivum mathematicum, Tome 47 (2011) no. 5, pp. 337-356 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We give an elementary proof of Noether's first Theorem while stressing the magical fact that the global quasi-symmetry only needs to hold for one fixed integration region. We provide sufficient conditions for gauging a global quasi-symmetry.
We give an elementary proof of Noether's first Theorem while stressing the magical fact that the global quasi-symmetry only needs to hold for one fixed integration region. We provide sufficient conditions for gauging a global quasi-symmetry.
Classification : 70H33, 70S10
Keywords: Noether’s first Theorem
@article{ARM_2011_47_5_a1,
     author = {Bering, Klaus},
     title = {Noether{\textquoteright}s theorem for a fixed region},
     journal = {Archivum mathematicum},
     pages = {337--356},
     year = {2011},
     volume = {47},
     number = {5},
     mrnumber = {2876938},
     zbl = {1265.70033},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2011_47_5_a1/}
}
TY  - JOUR
AU  - Bering, Klaus
TI  - Noether’s theorem for a fixed region
JO  - Archivum mathematicum
PY  - 2011
SP  - 337
EP  - 356
VL  - 47
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ARM_2011_47_5_a1/
LA  - en
ID  - ARM_2011_47_5_a1
ER  - 
%0 Journal Article
%A Bering, Klaus
%T Noether’s theorem for a fixed region
%J Archivum mathematicum
%D 2011
%P 337-356
%V 47
%N 5
%U http://geodesic.mathdoc.fr/item/ARM_2011_47_5_a1/
%G en
%F ARM_2011_47_5_a1
Bering, Klaus. Noether’s theorem for a fixed region. Archivum mathematicum, Tome 47 (2011) no. 5, pp. 337-356. http://geodesic.mathdoc.fr/item/ARM_2011_47_5_a1/

[1] Arnold, V. I.: Mathematical Methods of Classical Mechanics. Springer–Verlag, 1989. | MR

[2] Barnich, G., Brandt, F., Henneaux, M.: Local BRST cohomology in gauge theories. Phys. Rep. 338 (2000), 439–569, arXiv:hep-th/0002245. | DOI | MR | Zbl

[3] Bering, K.: Putting an edge to the Poisson bracket. J. Math. Phys. 41 (2000), 7468–7500. | DOI | MR | Zbl

[4] Bogoliubov, N. N., Shirkov, D. V.: Introduction to the Theory of Quantized Fields. 3rd ed., John Wiley and Sons Inc., 1980. | MR

[5] de Wit, B., Smith, J.: Field Theory in Particle Physics. vol. 1, North–Holland, 1986.

[6] Goldstein, H.: Classical Mechanics. Addison–Wesley Publishing, 1980, Second edition. | MR | Zbl

[7] Hill, E. L.: Hamilton’s principle and the conservation theorems of mathematical physics. Rev. Modern Phys. 23 (1951), 253–260. | DOI | MR | Zbl

[8] Ibragimov, N. Kh.: Invariant variational problems and the conservation laws (remarks on E. Noether’s theorem). Theoret. Mat.h Phys. 1 (1969), 267–274. | DOI | MR

[9] José, J. V., Saletan, E. J.: Classical Dynamics: A Contemporary Approach. Cambridge Univ. Press, 1998. | MR

[10] Komorowski, J.: A modern version of the E. Noether’s theorems in the calculus of variations, Part I. Studia Math. 29 (1968), 261–273. | MR

[11] Noether, E.: Invariante Variationsprobleme. Nachr. d. König. Gesellsch. d. Wiss. zu Göttingen, Math.–Phys. Klasse (1918), 235—257, English translation: arXiv:physics/0503066.

[12] Olver, P. J.: Applications of Lie Groups to Differential Equations. 2nd ed., Springer–Verlag, 1993. | MR | Zbl

[13] Polchinski, J.: String Theory. vol. 1, Cambridge Univ. Press, 1998. | Zbl

[14] Ramond, P.: Field Theory: A Modern Primer. Addison–Wesley, 1989. | MR

[15] Sarlet, W., Cantrijn, F.: Generalizations of Noether’s theorem in classical mechanics. SIAM Rev. 23 (1981), 467–494. | MR | Zbl

[16] Trautman, A.: Noether equations and conservation laws. Commun. Math. Phys. 6 (1967), 248–261. | MR | Zbl

[17] http://en.wikipedia.org/wiki/Noether's_theorem</b> tp://en.wikipedia.org/wiki/noether's_theorem.