Keywords: Fedosov manifolds; Segal-Shale-Weil representation; Kostant’s spinors; elliptic complexes
@article{ARM_2011_47_4_a6,
author = {Kr\'ysl, Svatopluk},
title = {Ellipticity of the symplectic twistor complex},
journal = {Archivum mathematicum},
pages = {309--327},
year = {2011},
volume = {47},
number = {4},
mrnumber = {2876952},
zbl = {1249.22009},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2011_47_4_a6/}
}
Krýsl, Svatopluk. Ellipticity of the symplectic twistor complex. Archivum mathematicum, Tome 47 (2011) no. 4, pp. 309-327. http://geodesic.mathdoc.fr/item/ARM_2011_47_4_a6/
[1] Borel, A., Wallach, N.: Continuous cohomology, discrete subgroups, and representations of reductive groups. Second edition. cond edition, Math. Surveys Monogr. 67 (2000), xviii+260 pp. | MR
[2] Branson, T.: Stein-Weiss operators and ellipticity. J. Funct. Anal. 151 (2) (1997), 334–383. | DOI | MR | Zbl
[3] Cahen, M., Schwachhöfer, L.: Special symplectic connections. J. Differential Geom. 83 (2) (2009), 229–271. | MR | Zbl
[4] Casselman, W.: Canonical extensions of Harish–Chandra modules to representations of $G$. Canad. J. Math. 41 (3) (1989), 385–438. | DOI | MR | Zbl
[5] Fedosov, B.: A simple geometrical construction of deformation quantization. J. Differential Geom. 40 (2) (1994), 213–238. | MR | Zbl
[6] Gelfand, I., Retakh, V., Shubin, M.: Fedosov manifolds. Adv. Math. 136 (1) (1998), 104–140. | DOI | MR | Zbl
[7] Green, M. B., Hull, C. M.: Covariant quantum mechanics of the superstring. Phys. Lett. B 225 (1989), 57–65. | DOI | MR
[8] Habermann, K., Habermann, L.: Introduction to symplectic Dirac operators. Lecture Notes in Math., vol. 1887, Springer-Verlag, Berlin, 2006. | DOI | MR | Zbl
[9] Hotta, R.: Elliptic complexes on certain homogeneous spaces. Osaka J. Math. 7 (1970), 117–160. | MR | Zbl
[10] Howe, R.: Remarks on classical invariant theory. Trans. Amer. Math. Soc. 313 (2) (1989), 539–570. | DOI | MR | Zbl
[11] Kostant, B.: Symplectic Spinors. Symposia Mathematica, vol. XIV, Cambridge Univ. Press, 1974, pp. 139–152. | MR | Zbl
[12] Krýsl, S.: Howe duality for metaplectic group acting on symplectic spinor valued forms. accepted in J. Lie Theory.
[13] Krýsl, S.: Symplectic spinor forms and the invariant operators acting between them. Arch. Math. (Brno) 42 (Supplement) (2006), 279–290. | MR
[14] Krýsl, S.: A complex of symplectic twistor operators in symplectic spin geometry. Monatsh. Math. 161 (4) (2010), 381–398. | DOI | MR
[15] Schmid, W.: Homogeneous complex manifolds and representations of semisimple Lie group. Representation theory and harmonic analysis on semisimple Lie groups. (Sally, P., Vogan, D., eds.), vol. 31, American Mathematical Society, Providence, Rhode-Island, Mathematical Surveys and Monographs, 1989. | MR
[16] Shale, D.: Linear symmetries of free boson fields. Trans. Amer. Math. Soc. 103 (1962), 149–167. | DOI | MR | Zbl
[17] Stein, E., Weiss, G.: Generalization of the Cauchy–Riemann equations and representations of the rotation group. Amer. J. Math. 90 (1968), 163–196. | DOI | MR | Zbl
[18] Tondeur, P.: Affine Zusammenhänge auf Mannigfaltigkeiten mit fast-symplektischer Struktur. Comment. Math. Helv. 36 (1961), 234–244. | DOI | MR
[19] Vaisman, I.: Symplectic Curvature Tensors. Monatshefte für Math., vol. 100, Springer-Verlag, Wien, 1985, pp. 299–327. | MR
[20] Weil, A.: Sur certains groups d’opérateurs unitaires. Acta Math. 111 (1964), 143–211. | DOI | MR
[21] Wells, R.: Differential analysis on complex manifolds. Grad. Texts in Math., vol. 65, Springer, New York, 2008. | DOI | MR | Zbl