Ellipticity of the symplectic twistor complex
Archivum mathematicum, Tome 47 (2011) no. 4, pp. 309-327 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

For a Fedosov manifold (symplectic manifold equipped with a symplectic torsion-free affine connection) admitting a metaplectic structure, we shall investigate two sequences of first order differential operators acting on sections of certain infinite rank vector bundles defined over this manifold. The differential operators are symplectic analogues of the twistor operators known from Riemannian or Lorentzian spin geometry. It is known that the mentioned sequences form complexes if the symplectic connection is of Ricci type. In this paper, we prove that certain parts of these complexes are elliptic.
For a Fedosov manifold (symplectic manifold equipped with a symplectic torsion-free affine connection) admitting a metaplectic structure, we shall investigate two sequences of first order differential operators acting on sections of certain infinite rank vector bundles defined over this manifold. The differential operators are symplectic analogues of the twistor operators known from Riemannian or Lorentzian spin geometry. It is known that the mentioned sequences form complexes if the symplectic connection is of Ricci type. In this paper, we prove that certain parts of these complexes are elliptic.
Classification : 22E46, 53C07, 53C80, 58J05
Keywords: Fedosov manifolds; Segal-Shale-Weil representation; Kostant’s spinors; elliptic complexes
@article{ARM_2011_47_4_a6,
     author = {Kr\'ysl, Svatopluk},
     title = {Ellipticity of the symplectic twistor complex},
     journal = {Archivum mathematicum},
     pages = {309--327},
     year = {2011},
     volume = {47},
     number = {4},
     mrnumber = {2876952},
     zbl = {1249.22009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2011_47_4_a6/}
}
TY  - JOUR
AU  - Krýsl, Svatopluk
TI  - Ellipticity of the symplectic twistor complex
JO  - Archivum mathematicum
PY  - 2011
SP  - 309
EP  - 327
VL  - 47
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ARM_2011_47_4_a6/
LA  - en
ID  - ARM_2011_47_4_a6
ER  - 
%0 Journal Article
%A Krýsl, Svatopluk
%T Ellipticity of the symplectic twistor complex
%J Archivum mathematicum
%D 2011
%P 309-327
%V 47
%N 4
%U http://geodesic.mathdoc.fr/item/ARM_2011_47_4_a6/
%G en
%F ARM_2011_47_4_a6
Krýsl, Svatopluk. Ellipticity of the symplectic twistor complex. Archivum mathematicum, Tome 47 (2011) no. 4, pp. 309-327. http://geodesic.mathdoc.fr/item/ARM_2011_47_4_a6/

[1] Borel, A., Wallach, N.: Continuous cohomology, discrete subgroups, and representations of reductive groups. Second edition. cond edition, Math. Surveys Monogr. 67 (2000), xviii+260 pp. | MR

[2] Branson, T.: Stein-Weiss operators and ellipticity. J. Funct. Anal. 151 (2) (1997), 334–383. | DOI | MR | Zbl

[3] Cahen, M., Schwachhöfer, L.: Special symplectic connections. J. Differential Geom. 83 (2) (2009), 229–271. | MR | Zbl

[4] Casselman, W.: Canonical extensions of Harish–Chandra modules to representations of $G$. Canad. J. Math. 41 (3) (1989), 385–438. | DOI | MR | Zbl

[5] Fedosov, B.: A simple geometrical construction of deformation quantization. J. Differential Geom. 40 (2) (1994), 213–238. | MR | Zbl

[6] Gelfand, I., Retakh, V., Shubin, M.: Fedosov manifolds. Adv. Math. 136 (1) (1998), 104–140. | DOI | MR | Zbl

[7] Green, M. B., Hull, C. M.: Covariant quantum mechanics of the superstring. Phys. Lett. B 225 (1989), 57–65. | DOI | MR

[8] Habermann, K., Habermann, L.: Introduction to symplectic Dirac operators. Lecture Notes in Math., vol. 1887, Springer-Verlag, Berlin, 2006. | DOI | MR | Zbl

[9] Hotta, R.: Elliptic complexes on certain homogeneous spaces. Osaka J. Math. 7 (1970), 117–160. | MR | Zbl

[10] Howe, R.: Remarks on classical invariant theory. Trans. Amer. Math. Soc. 313 (2) (1989), 539–570. | DOI | MR | Zbl

[11] Kostant, B.: Symplectic Spinors. Symposia Mathematica, vol. XIV, Cambridge Univ. Press, 1974, pp. 139–152. | MR | Zbl

[12] Krýsl, S.: Howe duality for metaplectic group acting on symplectic spinor valued forms. accepted in J. Lie Theory.

[13] Krýsl, S.: Symplectic spinor forms and the invariant operators acting between them. Arch. Math. (Brno) 42 (Supplement) (2006), 279–290. | MR

[14] Krýsl, S.: A complex of symplectic twistor operators in symplectic spin geometry. Monatsh. Math. 161 (4) (2010), 381–398. | DOI | MR

[15] Schmid, W.: Homogeneous complex manifolds and representations of semisimple Lie group. Representation theory and harmonic analysis on semisimple Lie groups. (Sally, P., Vogan, D., eds.), vol. 31, American Mathematical Society, Providence, Rhode-Island, Mathematical Surveys and Monographs, 1989. | MR

[16] Shale, D.: Linear symmetries of free boson fields. Trans. Amer. Math. Soc. 103 (1962), 149–167. | DOI | MR | Zbl

[17] Stein, E., Weiss, G.: Generalization of the Cauchy–Riemann equations and representations of the rotation group. Amer. J. Math. 90 (1968), 163–196. | DOI | MR | Zbl

[18] Tondeur, P.: Affine Zusammenhänge auf Mannigfaltigkeiten mit fast-symplektischer Struktur. Comment. Math. Helv. 36 (1961), 234–244. | DOI | MR

[19] Vaisman, I.: Symplectic Curvature Tensors. Monatshefte für Math., vol. 100, Springer-Verlag, Wien, 1985, pp. 299–327. | MR

[20] Weil, A.: Sur certains groups d’opérateurs unitaires. Acta Math. 111 (1964), 143–211. | DOI | MR

[21] Wells, R.: Differential analysis on complex manifolds. Grad. Texts in Math., vol. 65, Springer, New York, 2008. | DOI | MR | Zbl