A class of metrics on tangent bundles of pseudo-Riemannian manifolds
Archivum mathematicum, Tome 47 (2011) no. 4, pp. 293-308 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We provide the tangent bundle $TM$ of pseudo-Riemannian manifold $(M,g)$ with the Sasaki metric $g^s$ and the neutral metric $g^n$. First we show that the holonomy group $H^s$ of $(TM ,g^s)$ contains the one of $(M,g)$. What allows us to show that if $(TM ,g^s)$ is indecomposable reducible, then the basis manifold $(M,g)$ is also indecomposable-reducible. We determine completely the holonomy group of $(TM ,g^n)$ according to the one of $(M,g)$. Secondly we found conditions on the base manifold under which $(TM ,g^s)$ ( respectively $(TM ,g^n)$ ) is Kählerian, locally symmetric or Einstein manifolds. $(TM ,g^n)$ is always reducible. We show that it is indecomposable if $(M,g)$ is irreducible.
We provide the tangent bundle $TM$ of pseudo-Riemannian manifold $(M,g)$ with the Sasaki metric $g^s$ and the neutral metric $g^n$. First we show that the holonomy group $H^s$ of $(TM ,g^s)$ contains the one of $(M,g)$. What allows us to show that if $(TM ,g^s)$ is indecomposable reducible, then the basis manifold $(M,g)$ is also indecomposable-reducible. We determine completely the holonomy group of $(TM ,g^n)$ according to the one of $(M,g)$. Secondly we found conditions on the base manifold under which $(TM ,g^s)$ ( respectively $(TM ,g^n)$ ) is Kählerian, locally symmetric or Einstein manifolds. $(TM ,g^n)$ is always reducible. We show that it is indecomposable if $(M,g)$ is irreducible.
Classification : 53B30, 53C07, 53C29, 53C50
Keywords: pseudo-Riemannian manifold; tangent bundle; Sasaki metric; neutral metric; holonomy group; indecomposable-reducible manifold; Einstein manifold
@article{ARM_2011_47_4_a5,
     author = {Dida, H. M. and Ikemakhen, A.},
     title = {A class of metrics on tangent bundles of {pseudo-Riemannian} manifolds},
     journal = {Archivum mathematicum},
     pages = {293--308},
     year = {2011},
     volume = {47},
     number = {4},
     mrnumber = {2876951},
     zbl = {1249.53020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2011_47_4_a5/}
}
TY  - JOUR
AU  - Dida, H. M.
AU  - Ikemakhen, A.
TI  - A class of metrics on tangent bundles of pseudo-Riemannian manifolds
JO  - Archivum mathematicum
PY  - 2011
SP  - 293
EP  - 308
VL  - 47
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ARM_2011_47_4_a5/
LA  - en
ID  - ARM_2011_47_4_a5
ER  - 
%0 Journal Article
%A Dida, H. M.
%A Ikemakhen, A.
%T A class of metrics on tangent bundles of pseudo-Riemannian manifolds
%J Archivum mathematicum
%D 2011
%P 293-308
%V 47
%N 4
%U http://geodesic.mathdoc.fr/item/ARM_2011_47_4_a5/
%G en
%F ARM_2011_47_4_a5
Dida, H. M.; Ikemakhen, A. A class of metrics on tangent bundles of pseudo-Riemannian manifolds. Archivum mathematicum, Tome 47 (2011) no. 4, pp. 293-308. http://geodesic.mathdoc.fr/item/ARM_2011_47_4_a5/

[1] Alekseevsky, D. V.: Riemannian manifolds with exceptional holonomy groups. Funksional Anal. Prilozh. 2 2 (1968), 1–10.

[2] Ambrose, W., Singer, I. M.: A theorem on holonomy. Trans. Amer. Math. Soc. 79 (1953), 428–443. | DOI | MR | Zbl

[3] Berger, M.: Sur les groupes d’holonomie des variétés à connexion affine et des variétés Riemanniennes. Bull. Soc. Math. France 83 (1955), 279–330. | MR

[4] Berger, M.: Les espace symétriques non compacts 1957. Ann. Sci. École Norm. Sup. (1957).

[5] Bergery, L. Bérard, Ikemakhen, A.: On the holonomy of Lorentzian manifolds. Proceedings of Symposia in Pure Mathematics, vol. 54 Part 2, 1993, pp. 27–40. | MR

[6] Bergery, L. Bérard, Ikemakhen, A.: Sur l’holonomie des variétés pseudo–Riemanniennes de signature (n,n). Bull. Soc. Math. France 125 (1) (1997), 93–114. | MR

[7] Besse, A.: Einstein manifolds. Springer Verlag, New York, 1987. | MR | Zbl

[8] Boubel, Ch.: Sur l’holonomie des manifolds pseudo–Riemanniennes. Ph.D. thesis, Université Henri Poincaré Nancy I, 2000.

[9] Boubel, Ch.: On the holonomy of Lorentzian metrics. Ann. Fac. Sci. Toulouse 14 (3) (2007), 427–475. | DOI | MR | Zbl

[10] Bryant, R. L.: Metrics with exceptional holonomy. Ann. of Math. (2) 126 (1987), 525–576. | MR | Zbl

[11] Bryant, R. L.: Classical, exceptional, and exotic holonomies: A status report. Actes de la Table Ronde de Géométrie Différentielle en l'Honneur de Marcel Berger, Soc. Math. France, 1996, pp. 93–166. | MR | Zbl

[12] Cahen, A., Wallach, N.: Lorentzian symmetric spaces. Bull. Amer. Math. Soc. 76 (1970), 585–591. | DOI | MR | Zbl

[13] Cahen, M., Parker, M.: Sur des classes d’espaces pseudo-Riemannien symétriques. Bull. Soc. Math. Belg. 22 (1970), 339–354. | MR

[14] Cahen, M., Parker, M.: Pseudo-Riemannian symmetric spaces. Mem. Amer. Math. Soc. 24 (229) (1980). | MR | Zbl

[15] de Rham, G.: Sur la réductibilité d’un espace de Riemann. Math Helv. 26 (1952), 328–344. | DOI | MR | Zbl

[16] Dombrowski, P.: On the geometry of the tangent bundle. J. Reine Angew. Math. 2101 (1962), 73–88. | MR | Zbl

[17] Galaev, A. S.: Metrics that realize all Lorentzian holonomy algebras. Int. J. Geom. Meth. Modern Phys. 3 (5–6) (2006), 1025–1045. | DOI | MR | Zbl

[18] Galaev, A. S.: Holonomy of Einstein Lorentzian manifolds. Classical and Quantum Gravity 27 (7) (2010), 1–13. | DOI | MR | Zbl

[19] Galaev, A. S., Leistner, T.: Holonomy groups of Lorentzian manifolds: Classification, examples, and applications, Recent developments in pseudo-Riemannian geometry. ESI Lect. Math. Phys., Eur. Math. Soc. (2008), 53—96. | MR

[20] Ikemakhen, A.: Example of indecomposable non–irreductible Lorentzian manifolds. Ann. Sci. Math. Quebec 20 (1996), 53–66. | MR

[21] Kobayashi, S., Nomizu, K.: Fondation of Differential Geometry, vol. I,II. Intersciense, New York–London, 1963. | MR

[22] Kowalski, O.: Curvature of the induced Riemannian metric on the tangent bundle of a Riemannian manifolds. J. Reine Angew. Math. 250 (1971), 124–129. | MR

[23] Krantz, T.: Holonomie des connexions sans torsion. Ph.D. thesis, University Henri Poincaré Nancy 1, 2007.

[24] Leistner, T.: Berger algebras, weak-Berger algebras and Lorentzian holonomy. (2002), sfb 288 preprint no. 567.

[25] Leistner, T.: On the classification of Lorentzian holonomy groups. J. Differential Geom. 76 (3) (2007), 423–484. | MR | Zbl

[26] Wu, H.: On the de Rham decomposition theorem. llinois J. Math. 8 (1964), 291–311. | MR | Zbl